Чем измеряется электрическое поле. Закон Кулона определяет электрическую силу

Силы, действующие на дистанции, иногда называются силами поля. Если зарядить объект, то он создаст электрическое поле – область с изменившимися характеристиками, его окружающую. Произвольный заряд, попавший в зону электрического поля, будет подвергаться действию его сил. На эти силы влияют степень заряженности объекта и дистанция до него.

Силы и заряды

Допустим, имеется какой-то изначальный электрозаряд Q, создающий электрическое поле. Сила этого поля измеряется электрозарядом, пребывающим в непосредственной близости. Этот электрозаряд именуют тестовым, поскольку он служит в качестве испытательного при определении напряженности и слишком маленький для влияния на создаваемое ЭП.

Контрольный электрозаряд будет именоваться q и обладать каким-то количественным значением. Когда его помещают в электрическое поле, он подвергается действующим притягивающим или отталкивающим силам F.

В качестве формулы напряженности электрического поля, обозначенной латинской буквой E , служит математическая запись:

Сила измеряется в ньютонах (Н), заряд – в кулонах (Кл). Соответственно, для напряженности используется единица – Н/Кл.

Другой часто используемой на практике единицей для однородных ЭП служит В/м. Это следствие формулы:

То есть E зависит от напряжения ЭП (разности потенциалов между двумя его точками) и расстояния.

Зависит ли напряженность от количественного значения электрозаряда? Из формулы можно видеть, что увеличение q влечет уменьшение Е. Но согласно закону Кулона, больший заряд также означает большую электрическую силу. Например, двукратное увеличение электрозаряда вызовет двукратное увеличение F. Следовательно, изменения напряженности не произойдет.

Важно! На напряженность ЭП не влияет количественный показатель испытательного заряда.

Как направлен вектор электрического поля

Для векторной величины обязательно применяется две характеристики: количественное значение и направление. На изначальный заряд действует сила, направленная к нему либо в противоположную сторону. Выбор достоверного направления определяется зарядным знаком. Чтобы разрешить вопрос, в какую сторону направляются линии напряженности, было принято направление силы F, воздействующей на положительный электрозаряд.

Важно! Линии напряженности поля, созданного электрозарядом, направлены от заряда со знаком «плюс» к заряду со знаком «минус». Если вообразить произвольный плюсовой исходный заряд, то линии будут выходить из него во все стороны. Для минусового заряда наблюдается наоборот вхождение силовых линий со всех окружающих сторон.

Наглядное отображение векторных величин ЭП производится посредством силовых линий. Смоделированный образец ЭП может состоять из бесконечного числа линий, которые располагаются по определенным правилам, дающим как можно больше информации о характере ЭП.

Правила вычерчивания силовых линий:

  1. Сильнейшим электрическим полем обладают электрозаряды большей величины. На схематическом рисунке это может быть показано увеличением частоты линий;
  2. В областях соединения с поверхностью объекта линии всегда ей перпендикулярны. На поверхности объектов правильной и неправильной формы никогда не существует электрической силы, параллельной ей. При существовании такой силы любой избыточный заряд на поверхности начал бы движение, и возник бы электрический ток внутри объекта, что никогда не бывает в статическом электричестве;
  3. При покидании поверхности объекта сила может менять направление из-за влияния ЭП других зарядов;
  4. Электрические линии не должны пересекаться. Если они пересекаются в какой-то точке пространства, тогда в этом пункте должно существовать два ЭП с собственным индивидуальным направлением. Это невыполнимое условие, так как каждое место ЭП имеет свою напряженность и направление, с ним связанное.

Силовые линии для конденсатора будут идти перпендикулярно пластинам, но у краев приобретать выпуклость. Это свидетельствует о нарушении однородности ЭП.

Учитывая условие о положительном электрозаряде, можно определиться с направлением вектора напряженности электрического поля. Этот вектор направлен в сторону силы, действующей на электрозаряд со знаком «плюс». В ситуациях, когда ЭП создается несколькими электрозарядами, вектор находится как результат геометрического суммирования всех сил, воздействиям которых подвержен испытательный заряд.

В то же время под линиями напряженности электрического поля понимается совокупность линий в зоне действия ЭП, касательными к которым будут в любом произвольном пункте векторы Е.

Если создается ЭП от двух и более зарядов, появляются линии, окружающие их конфигурацию. Такие построения являются громоздкими и выполняются с помощью компьютерной графики. При решении практических задач используется результирующий вектор напряженности электрического поля для заданных точек.

Закон Кулона определяет электрическую силу:

F = (K x q x Q)/r², где:

  • F – электрическая сила, направленная по линии между двумя электрозарядами;
  • К – постоянная пропорциональности;
  • q и Q – количественные величины зарядов (Кл);
  • r – дистанция между ними.

Постоянную пропорциональность находят из соотношения:

K = 1/(4π x ε).

Величина постоянной зависит от среды, в которой располагаются заряды (диэлектрическая проницаемость).

Тогда F =1/(4π x ε) х (q x Q)/r² .

Закон действует в природной среде. Для теоретического расчета изначально предполагается, что электрозаряды находятся в свободном пространстве (вакууме). Тогда значение ε = 8,85 х 10(в -12 степени), а K = 1/(4π x ε) = 9 х 10(в 9 степени).

Важно! Формулы, описывающие ситуации, где есть сферическая симметрия (большинство случаев), имеют в своем составе 4π. Если имеется цилиндрическая симметрия, появляется 2π.

Чтобы вычислить модуль напряженности, нужно подставить в формулу для Е математическое выражение закона Кулона:

E = F/q = 1/(4π x ε) х (q x Q)/(r² x q) = 1/(4π x ε) х Q/r²,

где Q – исходный заряд, создающий ЭП.

Чтобы найти напряженность ЭП в конкретной точке, надо разместить в этой точке пробный заряд, определить дистанцию до него и вычислить E по формуле.

Закон обратных квадратов

В формульном отображении закона Кулона дистанция между электрозарядами появляется в уравнении как 1/r². Значит, будет справедливым применение закона обратных квадратов. Другим известным таким законом является закон гравитации Ньютона.

Это выражение иллюстрирует, как изменение одной переменной может повлиять на другую. Математическая запись закона:

Е1/Е2 = r2²/r1².

Значение напряженности поля зависит от местоположения выбранной точки, его величина уменьшается с удалением от заряда. Если взять напряженности ЭП в двух разных точках, то отношение их количественного значения будет находиться в обратно пропорциональной зависимости от квадратов расстояния.

Для измерения напряженности ЭП в практических условиях существуют специальные приборы, например, тестер VX 0100.

Видео

Напряженность электрического поля является векторной величиной, а значит имеет численную величину и направление. Величина напряженности электрического поля имеет свою размерность, которая зависит от способа ее вычисления.

Электрическая сила взаимодействия зарядов описывается как бесконтактное действие, а иначе говоря имеет место дальнодействие, то есть действие на расстоянии. Для того, чтобы описать такое дальнодействие удобно ввести понятие электрического поля и с его помощью объяснить действие на расстоянии.

Давайте возьмем электрический заряд, который мы обозначим символом Q . Этот электрический заряд создает электрическое поле, то есть он является источником действия силы. Так как во вселенной всегда имеется хотя бы один положительный и хотя бы один отрицательный заряд, которые действую друг на друга на любом, даже бесконечно далеком расстоянии, то любой заряд является источником силы , а значит уместно описание создаваемого ими электрического поля. В нашем случае заряд Q является источником электрического поля и мы будем его рассматривать именно как источник поля.

Напряженность электрического поля источника заряда может быть измерена с помощью любого другого заряда, находящегося где-то в его окрестностях. Заряд, который используется для измерения напряженности электрического поля называют пробным зарядом , так как он используется для проверки напряженности поля. Пробный заряд имеет некоторое количество заряда и обозначается символом q .

При помещении пробного заряда в электрическое поле источника силы (заряд Q ), пробный заряд будет испытывать действие электрической силы - или притяжения, или отталкивания. Силу можно обозначить как это обычно принять в физике символом F . Тогда величину электрического поля можно определить просто как отношение силы к величине пробного заряда.

Если напряженность электрического поля обозначается символом E , то уравнение может быть переписано в символической форме как

Стандартные метрические единицы измерения напряженности электрического поля возникают из его определения. Таким образом напряженность электрического поля определяется как сила равная 1 Ньютону (Н) деленному на 1 Кулон (Кл). Напряженность электрического поля измеряется в Ньютон/Кулон или иначе Н/Кл. В системе СИ также измеряется в Вольт/метр . Для понимания сути такого предмета как гораздо важнее размерность в метрической системе в Н/Кл , потому как в такой размерность отражается происхождение такой характеристики как напряженность поля. Обозначение в Вольт/Метр делает понятие потенциала поля (Вольт) базовым, что в некоторых областях удобно, но не во всех.

В приведенном выше примере участвуют два заряда Q (источник ) и q пробный . Оба этих заряда являются источником силы, но какой из них следует применять в вышеприведенной формуле? В формуле присутствует только один заряд и это пробный заряд q (не источник).

Не зависит от количества пробного заряда q . На первый взгляд это может привести вас в замешательство, если, конечно, вы задумаетесь над этим. Беда в том, что не все имеют полезную привычку думать и пребывают в так называемом блаженном невежестве. Если вы не думаете, то и замешательства такого рода у вас и не возникнет. Так как же напряженность электрического поля не зависит от q , если q присутствует в уравнении? Отличный вопрос! Но если вы подумаете об этом немного, вы сможете ответить на этот вопрос. Увеличение количества пробного заряда q - скажем, в 2 раза - увеличится и знаменатель уравнения в 2 раза. Но в соответствии с Законом Кулона , увеличение заряда также увеличит пропорционально и порождаемую силу F . Увеличится заряд в 2 раза, тогда и сила F возрастет в то же количество раз. Так как знаменатель в уравнении увеличивается в два раза (или три, или четыре), то и числитель увеличится во столько же раз. Эти два изменения компенсируют друг друга, так что можно смело сказать, что напряженность электрического поля не зависит от количества пробного заряда.

Таким образом, независимо от того, какого количества пробный заряд q используется в уравнении, напряженность электрического поля E в любой заданной точке вокруг заряда Q (источника ) будет одинаковой при измерении или вычислении.

Более подробно о формуле напряженности электрического поля

Выше мы коснулись определения напряженности электрического поля в том, как она измеряется. Теперь мы попробуем исследовать более развернутое уравнение с переменными, чтобы яснее представить саму суть вычисления и измерения напряженности электрического поля. Из уравнения мы сможем увидеть, что именно влияет, а что нет. Для этого нам прежде всего потребуется вернутся к уравнению Закона Кулона .

Закон Кулона утверждает, что электрическая сила F между двумя зарядами прямо пропорциональна произведению количества этих зарядов и обратно пропорциональна квадрату расстояния между их центрами.

Если внести в уравнение Закона Кулона два наших заряда Q (источник ) и q (пробный заряд), тогда мы получим следующую запись:


Если выражение для электрической силы F , как она определяется Законом Кулона подставить в уравнение для напряженности электрического поля E , которое приведено выше, тогда мы получим следующее уравнение:

Обратите внимание, что пробный заряд q был сокращен, то есть убран как в числителе так и в знаменателе. Новая формула для напряженности электрического поля E выражает напряженность поля в терминах двух переменных, которые влияют на нее. Напряженность электрического поля зависит от количества исходного заряда Q и от расстоянии от этого заряда d до точки пространства, то есть геометрического места, в котором и определяется значение напряженности. Таким образом у нас появилась возможность характеризовать электрическое поле через его напряженность.

Закон обратных квадратов

Как и все формулы в физике, формулы для напряженности электрического поля могут быть использованы для алгебраического решения задач (проблем) физики. Точно также, как и любую другую формулу в ее алгебраической записи, можно исследовать и формулу напряженности электрического поля. Такое исследование способствует более глубокому пониманию сути физического явления и характеристик этого явления. Одна из особенностей формулы напряженности поля является то, что она иллюстрирует обратную квадратичную зависимость между напряженностью электрического поля и расстоянием до точки в пространстве от источника поля. Сила электрического поля, создаваемого в источнике заряде Q обратно пропорционально квадрату расстояния от источника. Иначе говорят, что искомая величина обратно пропорциональна квадрату .

Напряженность электрического поля зависит от геометрического места в пространстве, и ее величина уменьшается с увеличением расстояния. Так, например, если расстояние увеличится в 2 раза, то напряженность уменьшится в 4 раза (2 2), если расстояния между уменьшится в 2 раза, то напряженность электрического поля увеличится в 4 раза (2 2). Если же расстояние увеличивается в 3 раза, то напряженность электрического поля уменьшается в 9 раз (3 2). Если расстояние увеличивается в 4 раза, то напряженность электрического поля уменьшается в 16 (4 2).

Направление вектора напряженности электрического поля

Как упоминалось ранее, напряженность электрического поля является векторной величиной. В отличие от скалярной величиной, векторная величина является не полностью описанной, если не определено ее направление. Величина вектора электрического поля рассчитывается как величина силы на любой пробный заряд, расположенный в электрическом поле .

Сила, действующая на пробный заряд может быть направлена либо к источнику заряда или непосредственно от него. Точное направление силы зависит от знаков пробного заряд и источника заряда, имеют ли они тот же знак заряда (тогда происходит отталкивание) или же их знаки противоположные (происходит притяжение). Чтобы решить проблему направления вектора электрического поля, направлен он к источнику или от источника были приняты правила, которые используются всеми учеными мира. Согласно этим правилам направление вектора всегда от заряда с положительным знаком полярности. Это можно представить в виде силовых линий, которые выходят из зарядов положительных знаков и заходят в заряды отрицательных знаков.

Каждый электрический заряд окружает электрическое поле. В результате длительных исследований ученые-физики пришли к выводу, что взаимодействие заряженных тел происходит благодаря электрическим полям, их окружающим. Они являются особой формой материи, которая неразрывно связана со всяким электрическим зарядом.

Изучение электрического поля проводят, вводя в него мелкие заряженные тела. Эти тела называют «пробными зарядами». Например, зачастую в роли пробного заряда используют заряженный пробковый шарик.

При внесении пробного заряда в электрическое поле тела, имеющего положительный заряд, лёгкий положительно заряженный пробковый шарик под его действием будет отклоняться тем больше, чем ближе мы будем его подносить к телу.

При перемещении пробного заряда в электрическом поле произвольного заряженного тела можно с легкостью обнаружить, что сила, действующая на него, будет различна в разных местах.

Так, при помещении последовательно в одну точку поля различных по величине пробных положительных зарядов q1, q2, q3, …, qn можно обнаружить, что силы, действующие на них, F1, F2, F3, …, Fn различны, однако отношение силы к размеру определенного заряда для такой точки поля неизменно:

F1/q1 = F2/q2 = F3/q3 = … = Fn/qn.

Если подобным образом будем исследовать разные точки поля, то получим следующее заключение: для каждой отдельно взятой точки в электрическом поле отношение величины силы, действующей на пробный заряд, к величине такого заряда неизменно и независимо от величины пробного заряда.

Из этого следует, что величина этого отношения характеризует электрическое поле в произвольной его точке. Величина, которая измеряется отношением силы, воздействующей на положительный заряд, расположенный в этой точке поля, к размеру заряда и является напряженностью электрического поля:

Она, как это видно из её определения, равна силе, которая действует на единицу позитивного заряда, помещенного в определенную точку поля.

За единицу напряженности электрополя принимают действующего на заряд размером в одну электростатическую единицу с силой в одну дину. Такую единицу называют абсолютной электростатической единицей напряженности.

Чтобы определить напряженность электрического поля любого точечного заряда q в произвольной точке поля А данного заряда, отстоящей от него на расстоянии r1, необходимо поместить в эту произвольную точку пробный заряд q1 и вычислить силу Fa, которая действует на него (для вакуума).

Fa = (q1q)/r²₁.

Если мы возьмем отношение величины силы, которая влияет на заряд, к его величине q1, то можно произвести расчет напряженности электрополя в точке А:

Кроме того, можно найти напряженность в произвольной точке В; она будет равна:

Поэтому напряженность электрического поля точечного заряда в определенной точке поля (в вакууме) будет прямо пропорциональна размеру данного заряда и обратно пропорциональна квадрату дистанции между этим зарядом и точкой.

Напряженность поля выступает в роли его силовой характеристики. Зная ее в произвольной точке поля Е, легко рассчитать и силу F, воздействующую на заряд q в данной точке:

Поля - Направление напряженности в каждой определенной точке поля будет совмещаться с направлением силы, воздействующей на положительный заряд, помещенный в точку.

При образовании поля несколькими зарядами: q1 и q2 - напряженность Е в любой точке А данного поля будет равняться геометрической сумме напряженности Е1 и Е2, создаваемых в данной точке отдельно зарядами q1 и q2.

Напряженность электрического поля в произвольной точке можно отобразить графически с помощью направленного отрезка, который исходит из этой точки, аналогично изображению силы и прочих векторных величин.

Физическая природа электрического поля и его графическое изображение . В пространстве вокруг электрически заряженного тела существует электрическое поле, представляющее собой один из видов материи. Электрическое поле обладает запасом электрической энергии, которая проявляется в виде электрических сил, действующих на находящиеся в поле заряженные тела.

Рис. 4. Простейшие электрические поля: а – одиночных положительного и отрицательного зарядов; б – двух разноименных зарядов; в – двух одноименных зарядов; г – двух параллельных и разноименно заряженныx пластин (однородное поле)

Электрическое поле условно изображают в виде электрических силовых линий, которые показывают направления действия электрических сил, создаваемых полем. Принято направлять силовые линии в ту сторону, в которую двигалась бы в электрическом поле положительно заряженная частица. Как показано на рис. 4, электрические силовые линии расходятся в разные стороны от положительно заряженных тел и сходятся у тел, обладающих отрицательным зарядом. Поле, созданное двумя плоскими разноименно заряженными параллельными пластинами (рис. 4, г), называется однородным.
Электрическое поле можно сделать видимым, если поместить в него взвешенные в жидком масле частички гипса: они поворачиваются вдоль поля, располагаясь по его силовым линиям (рис. 5).

Напряженность электрического поля. Электрическое поле действует на внесенный в него заряд q (рис. 6) с некоторой силой F. Следовательно, об интенсивности электрического поля можно судить по значению силы, с которой притягивается или отталкивается некоторый электрический заряд, принятый за единицу. В электротехнике интенсивность поля характеризуют напряженностью электрического поля Е. Под напряженностью понимают отношение силы F, действующей на заряженное тело в данной точке поля, к заряду q этого тела:

E = F / q (1)

Поле с большой напряженностью Е изображается графически силовыми линиями большой густоты; поле с малой напряженностью - редко расположенными силовыми линиями. По мере удаления от заряженного тела силовые линии электрического поля располагаются реже, т. е. напряженность поля уменьшается (см. рис. 4 а,б и в). Только в однородном электрическом поле (см. рис. 4, г) напряженность одинакова во всех его точках.

Электрический потенциал . Электрическое поле обладает определенным запасом энергии, т. е. способностью совершать работу. Как известно, энергию можно также накопить в пружине, для чего ее нужно сжать или растянуть. За счет этой энергии можно получить определенную работу. Если освободить один из концов пружины, то он сможет переместить на некоторое расстояние связанное с этим концом тело. Точно так же энергия электрического поля может быть реализована, если внести в него какой-либо заряд. Под действием сил поля этот заряд будет перемещаться по направлению силовых линий, совершая определенную работу.
Для характеристики энергии, запасенной в каждой точке электрического поля, введено специальное понятие - электрический потенциал. Электрический потенциал? поля в данной точке равен работе, которую могут совершить силы этого поля при перемещении единицы положительного заряда из этой точки за пределы поля.
Понятие электрического потенциала аналогично понятию уровня для различных точек земной поверхности. Очевидно, что для подъема локомотива в точку Б (рис. 7) нужно затратить большую работу, чем для подъема его в точку А. Поэтому локомотив, поднятый на уровень Н2, при спуске сможет совершить большую работу, чем локомотив, поднятый на уровень Н2 За нулевой уровень, от которого производится отсчет высоты, принимают обычно уровень моря.

Точно так же за нулевой потенциал условно принимают потенциал, который имеет поверхность земли.
Электрическое напряжение . Различные точки электрического поля обладают разными потенциалами. Обычно нас мало интересует абсолютная величина потенциалов отдельных точек электрического поля, но нам весьма важно знать разность потенциалов?1-?2 между двумя точками поля А и Б (рис. 8). Разность потенциалов?1 и?2 двух точек поля характеризует собой работу, затрачиваемую силами поля на перемещение единичного заряда из одной точки поля с большим потенциалом в другую точку с меньшим потенциалом. Точно так же нас на практике мало интересуют абсолютные высоты Н1и Н2 точек А и Б над уровнем моря (см. рис. 7), но для нас важно знать разность уровней И между этими точками, так как на подъем локомотива из точки А в точку Б надо затратить работу, зависящую от величины Я. Разность потенциалов между двумя точками поля носит название электрического напряжения. Электрическое напряжение обозначают буквой U (и). Оно численно равно отношению работы W, которую нужно затратить на перемещение положительного заряда q из одной точки поля в другую, к этому заряду, т. е.

U = W / q (2)

Следовательно, напряжение U, действующее между различными точками электрического поля, характеризует запасенную в этом поле энергию, которая может быть отдана путем перемещения между этими точками электрических зарядов.
Электрическое напряжение - важнейшая электрическая величина, позволяющая вычислять работу и мощность, развиваемую при перемещении зарядов в электрическом поле. Единицей электрического напряжения служит вольт (В). В технике напряжение иногда измеряют в тысячных долях вольта - милливольтах (мВ) и миллионных долях вольта - микровольтах (мкВ). Для измерения высоких напряжений пользуются более крупными единицами - киловольтами (кВ) - тысячами вольт.
Напряженность электрического поля при однородном поле представляет собой отношение электрического напряжения, действующего между двумя точками поля, к расстоянию l между этими точками:

E = U / l (3)

Напряженность электрического поля измеряют в вольтах на метр (В/м). При напряженности поля в 1 В/м на заряд в 1 Кл действует сила, равная 1 ньютону (1 Н). В некоторых случаях применяют более крупные единицы измерения напряженности поля В/см (100 В/м) и В/мм (1000 В/м).

Напряженность электрического поля является векторной величиной, а значит имеет численную величину и направление. Величина напряженности электрического поля имеет свою размерность, которая зависит от способа ее вычисления.

Электрическая сила взаимодействия зарядов описывается как бесконтактное действие, а иначе говоря имеет место дальнодействие, то есть действие на расстоянии. Для того, чтобы описать такое дальнодействие удобно ввести понятие электрического поля и с его помощью объяснить действие на расстоянии.

Давайте возьмем электрический заряд, который мы обозначим символом Q . Этот электрический заряд создает электрическое поле, то есть он является источником действия силы. Так как во вселенной всегда имеется хотя бы один положительный и хотя бы один отрицательный заряд, которые действую друг на друга на любом, даже бесконечно далеком расстоянии, то любой заряд является источником силы , а значит уместно описание создаваемого ими электрического поля. В нашем случае заряд Q является источником электрического поля и мы будем его рассматривать именно как источник поля.

Напряженность электрического поля источника заряда может быть измерена с помощью любого другого заряда, находящегося где-то в его окрестностях. Заряд, который используется для измерения напряженности электрического поля называют пробным зарядом , так как он используется для проверки напряженности поля. Пробный заряд имеет некоторое количество заряда и обозначается символом q .

При помещении пробного заряда в электрическое поле источника силы (заряд Q ), пробный заряд будет испытывать действие электрической силы - или притяжения, или отталкивания. Силу можно обозначить как это обычно принять в физике символом F . Тогда величину электрического поля можно определить просто как отношение силы к величине пробного заряда.

Если напряженность электрического поля обозначается символом E , то уравнение может быть переписано в символической форме как

Стандартные метрические единицы измерения напряженности электрического поля возникают из его определения. Таким образом напряженность электрического поля определяется как сила равная 1 Ньютону (Н) деленному на 1 Кулон (Кл). Напряженность электрического поля измеряется в Ньютон/Кулон или иначе Н/Кл. В системе СИ также измеряется в Вольт/метр . Для понимания сути такого предмета как гораздо важнее размерность в метрической системе в Н/Кл , потому как в такой размерность отражается происхождение такой характеристики как напряженность поля. Обозначение в Вольт/Метр делает понятие потенциала поля (Вольт) базовым, что в некоторых областях удобно, но не во всех.

В приведенном выше примере участвуют два заряда Q (источник ) и q пробный . Оба этих заряда являются источником силы, но какой из них следует применять в вышеприведенной формуле? В формуле присутствует только один заряд и это пробный заряд q (не источник).

Не зависит от количества пробного заряда q . На первый взгляд это может привести вас в замешательство, если, конечно, вы задумаетесь над этим. Беда в том, что не все имеют полезную привычку думать и пребывают в так называемом блаженном невежестве. Если вы не думаете, то и замешательства такого рода у вас и не возникнет. Так как же напряженность электрического поля не зависит от q , если q присутствует в уравнении? Отличный вопрос! Но если вы подумаете об этом немного, вы сможете ответить на этот вопрос. Увеличение количества пробного заряда q - скажем, в 2 раза - увеличится и знаменатель уравнения в 2 раза. Но в соответствии с Законом Кулона , увеличение заряда также увеличит пропорционально и порождаемую силу F . Увеличится заряд в 2 раза, тогда и сила F возрастет в то же количество раз. Так как знаменатель в уравнении увеличивается в два раза (или три, или четыре), то и числитель увеличится во столько же раз. Эти два изменения компенсируют друг друга, так что можно смело сказать, что напряженность электрического поля не зависит от количества пробного заряда.

Таким образом, независимо от того, какого количества пробный заряд q используется в уравнении, напряженность электрического поля E в любой заданной точке вокруг заряда Q (источника ) будет одинаковой при измерении или вычислении.

Более подробно о формуле напряженности электрического поля

Выше мы коснулись определения напряженности электрического поля в том, как она измеряется. Теперь мы попробуем исследовать более развернутое уравнение с переменными, чтобы яснее представить саму суть вычисления и измерения напряженности электрического поля. Из уравнения мы сможем увидеть, что именно влияет, а что нет. Для этого нам прежде всего потребуется вернутся к уравнению Закона Кулона .

Закон Кулона утверждает, что электрическая сила F между двумя зарядами прямо пропорциональна произведению количества этих зарядов и обратно пропорциональна квадрату расстояния между их центрами.

Если внести в уравнение Закона Кулона два наших заряда Q (источник ) и q (пробный заряд), тогда мы получим следующую запись:


Если выражение для электрической силы F , как она определяется Законом Кулона подставить в уравнение для напряженности электрического поля E , которое приведено выше, тогда мы получим следующее уравнение:

Обратите внимание, что пробный заряд q был сокращен, то есть убран как в числителе так и в знаменателе. Новая формула для напряженности электрического поля E выражает напряженность поля в терминах двух переменных, которые влияют на нее. Напряженность электрического поля зависит от количества исходного заряда Q и от расстоянии от этого заряда d до точки пространства, то есть геометрического места, в котором и определяется значение напряженности. Таким образом у нас появилась возможность характеризовать электрическое поле через его напряженность.

Закон обратных квадратов

Как и все формулы в физике, формулы для напряженности электрического поля могут быть использованы для алгебраического решения задач (проблем) физики. Точно также, как и любую другую формулу в ее алгебраической записи, можно исследовать и формулу напряженности электрического поля. Такое исследование способствует более глубокому пониманию сути физического явления и характеристик этого явления. Одна из особенностей формулы напряженности поля является то, что она иллюстрирует обратную квадратичную зависимость между напряженностью электрического поля и расстоянием до точки в пространстве от источника поля. Сила электрического поля, создаваемого в источнике заряде Q обратно пропорционально квадрату расстояния от источника. Иначе говорят, что искомая величина обратно пропорциональна квадрату .

Напряженность электрического поля зависит от геометрического места в пространстве, и ее величина уменьшается с увеличением расстояния. Так, например, если расстояние увеличится в 2 раза, то напряженность уменьшится в 4 раза (2 2), если расстояния между уменьшится в 2 раза, то напряженность электрического поля увеличится в 4 раза (2 2). Если же расстояние увеличивается в 3 раза, то напряженность электрического поля уменьшается в 9 раз (3 2). Если расстояние увеличивается в 4 раза, то напряженность электрического поля уменьшается в 16 (4 2).

Направление вектора напряженности электрического поля

Как упоминалось ранее, напряженность электрического поля является векторной величиной. В отличие от скалярной величиной, векторная величина является не полностью описанной, если не определено ее направление. Величина вектора электрического поля рассчитывается как величина силы на любой пробный заряд, расположенный в электрическом поле .

Сила, действующая на пробный заряд может быть направлена либо к источнику заряда или непосредственно от него. Точное направление силы зависит от знаков пробного заряд и источника заряда, имеют ли они тот же знак заряда (тогда происходит отталкивание) или же их знаки противоположные (происходит притяжение). Чтобы решить проблему направления вектора электрического поля, направлен он к источнику или от источника были приняты правила, которые используются всеми учеными мира. Согласно этим правилам направление вектора всегда от заряда с положительным знаком полярности. Это можно представить в виде силовых линий, которые выходят из зарядов положительных знаков и заходят в заряды отрицательных знаков.