Качественный анализ. Привет студент Реакции позволяющие определить группу дубильных веществ

Для получения суммы дубильных веществ растительное сырье экстрагируют горячей водой в соотношении 1:30 или 1:10.

Качественные реакции на дубильные вещества можно подразделить

на 2 группы:

Ø Общие реакции осаждения – для обнаружения дубильных веществ

Ø Групповые – для установления принадлежности дубильных веществ к определенной группе

Для обнаружения дубильных веществ в растительном сырье используют следующие реакции:

1. Специфической реакцией на дубильные вещества является реакция осаждения желатином. Используют 1 %-й раствор желатина на 10 %-ном растворе хлорида натрия. Появляется хлопьевидный осадок, растворимый в избытке желатина. Отрицательная реакция с желатином свидетельствует об отсутствии дубильных веществ.

2. Реакция с солями алкалоидов. Образуется аморфный осадок за счет образования водородных связей с гидроксильными группами дубильных веществ и атомами азота алкалоида.

Эти реакции дают одинаковый результат независимо от группы дубильных веществ.

Реакции, позволяющие определить группу дубильных веществ.

1.Реакция Стиасни – с 40 % раствором формальдегида и конц. HCl -

Конденсированные дубильные вещества образуют осадок кирпично-красного цвета

2.Бромная вода (5 г брома в 1 л воды) - к 2-3 мл испытуемого раствора прибавляют по каплям бромную воду до появления в растворе запаха брома; в случае присутствия конденсированных дубильных веществ образуется оранжевый или желтый осадок.

3. Окрашивание с солями трехвалентного железа, железоаммонийными квасцами –

черно-синее (дубильные вещества гидролизуемой группы, которые являются производными пирогаллола)

или черно-зеленое (дубильные вещества конденсированной группы, которые являются производными пирокатехина).

4.Катехины дают красное окрашивание с ванилином

(в присутствии конц. HCl или 70 %-ной H 2 SO 4 развивается яркая красная окраска).

Катехины образуют при этой реакции окрашенный продукт следующего строения:

Реакцией отличающей пирогалловые танниды от пирокатехиновых является реакция нитрозометилуретаном.

При кипячении растворов дубильных веществ с нитрозометилуретаном танниды пирокатехинового ряда осаждаются полностью,

а присутствие пирогалловых таннидов можно обнаружить в фильтрате путем прибавления железоаммиачных квасцов и натрия ацетата – фильтрат окрашивается в фиолетовый цвет.

Свободная эллаговая кислота дает красно-фиолетовую окраску при добавлении нескольких кристаллов нитрита натрия и трех-четырех капель уксусной кислоты.

7. Для обнаружения связанной эллаговой кислоты (или гаксаоксидифеновой) уксусную кислоту заменяют 0,1 н. серной или соляной кислотой (кармино-красная окраска, переходящая в синюю).

8. Дубильные вещества с белками создают непроницаемую для воды пленку (дубление). Вызывая частичное свертывание белков, они образуют на слизистых оболочках и раневых поверхностях защитную пленку.

9. При соприкосновении с воздухом (например, резке свежих корневищ) дубильные вещества легко окисляются, превращаясь во флобафены или красени, которые обусловливают темно-бурую окраску многих кор и других органов, настоев.

Флобафены нерастворимы в холодной воде, растворяются в горячей воде, окрашивая отвары и настой в бурый цвет.

10. С 10 %-ным раствором среднего ацетата свинца (одновременно добавляют 10 %-ный раствор уксусной кислоты) :

образуется белый осадок, нерастворимый в уксусной кислоте – дубильные вещества гидролизуемой группы (осадок отфильтровывают и в фильтрате определяют содержание конденсированных дубильных веществ, с 1 %-ным раствором железоаммонийных квасцов – черно-зеленое окрашивание);

белый осадок, растворимый в уксусной кислоте – дубильные вещества конденсированной группы.

Введение
В растениях одной из наиболее распространенных групп биологически активных веществ (БАВ) являются дубильные вещества (танины), которые обладают широким спектром фармакологической активности. Дубильные вещества оказывают кровоостанавливающее, вяжущее, противовоспалительное, антимикробное действие, а также проявляют высокую P-витаминную активность, антисклеротическое и антигипоксическое действие. Конденсированные дубильные вещества являются антиоксидантами, оказывают противоопухолевый эффект. Танины используют как противоядие при отравлении гликозидами, алкалоидами, солями тяжелых металлов. В медицине дубильные вещества применяются в терапии таких заболеваний как стоматиты, гингивиты, фарингиты, ангины, колиты, энтероколиты, дизентерии, применяют их и при ожогах, маточных, желудочных и геморроидальных кровотечениях .
Определение содержания дубильных веществ является важным составляющим в установлении качества растительного сырья, содержащего танины. Для определения дубильных веществ существует различные методы, но чаще всего применяются титриметрический и спектрофотометрический методы .
Цель работы – валидационная оценка методик количественного определения дубильных веществ по показателям сходимость, правильность, линейность.
Материалы и методы исследования
В качестве объекта исследования использовалось сырье – воздушно-сухая трава манжетки обыкновенной (Alchemilla vulgaris L.)сем. Розоцветные (Rosaceae).
Для валидационной оценки методик количественного определения дубильных веществ в воздушно-сухой траве манжетки обыкновенной были выбраны два метода: перманганатометрическое титрование и спектрофотометрическое определение на основе реакции с реактивом Фолина-Чокальтеу . Выбор методик обоснован частотой использования их на практике.
Воздушно-сухую траву манжетки обыкновенной заготавливали в сентябре 2015 года в Приморском районе Архангельской области, которая являлась сырьем для исследования и количественного определения дубильных веществ (танинов).
Методика перманганатометрического определения является фармакопейной, которая и основана на реакции окисления танинов раствором калия перманганата . Около 2 г (точная навеска), измельченного сырья, просеянного сквозь сито с размером отверстий 3 мм, помещали в коническую колбу вместимостью 500 мл, прибавляли 250 мл нагретой до кипения воды и кипятили с обратным холодильником на электрической плитке с закрытой спиралью в течение 30 минут при периодическом перемешивании. Полученное извлечение охлаждали до комнатной температуры и процеживали коническую колбу вместимостью 250 мл через вату так, чтобы частицы сырья не попали в колбу. Отбирали пипеткой 25 мл полученного извлечения и переносили в другую коническую колбу вместимостью 750 мл, прибавили 500 мл воды, 25 мл раствора индигосульфокислоты и титровали при постоянном перемешивании раствором калия перманганата (0,02 моль/л) до золотисто-желтого окрашивания.
Параллельно проводили контрольный опыт.
1 мл раствора перманганата калия (0,02 моль/л) соответствует 0,004157 г дубильных веществ в пересчете на танин.
Содержание дубильных веществ (Х), в процентах, в пересчете на абсолютное сухое сырье, вычислили по формуле (1):

Где (1)

V – объем раствора перманганата калия (0,02 моль/л), израсходованного на титрование извлечения, мл;
– объем раствора перманганата калия (0,02 моль/л), израсходованного на титрование в контрольном опыте, мл;
0,004157 – количество дубильных веществ, соответствующее 1 мл раствора перманганата калия (0,02 моль/л) (в пересчете на танин), г;
250 – общий объем извлечения, мл;
25 – объем извлечения, взятого для титрования, мл.
m – масса сырья, г;
W – потеря в массе при высушивании сырья, г;
Для количественного определения дубильных веществ методом спектрофотометрии, около 1 г (точная навеска) исследуемого растительного сырья, измельченного до размера частиц, проходящих через сита с размером отверстий 1 мм, помещали в коническую колбу со шлифом вместимостью 50 мл, добавляли 25 мл смеси ацетон-вода в соотношении 7:3 (70% раствор ацетона). Колбу закрывали и помещали в лабораторное перемешивающее устройство (ЛАБ ПУ-2, Россия) на 60 минут. Полученное извлечение фильтровали в мерную колбу вместимостью 50 мл и доводили объем до метки 70% раствором ацетона (раствор А).
В мерную колбу вместимостью 10 мл помещали 1 мл раствора А, объем раствора в колбе доводили водой очищенной до метки (раствор Б).
0,5 мл раствора Б помещали в мерную колбу вместимостью 10 мл, добавляли 2 мл воды очищенной, 0,25 мл реактива Фолена-Чокальтеу, 1,25 мл 20% раствора натрия карбоната и доводили объем раствора водой до метки. Колбу оставляли на 40 минут в защищенном от света месте. Оптическую плотность раствора определяли при длине волны 750 нм. В качестве раствора сравнения использовали смесь реактивов без добавления извлечения.
Содержание дубильных веществ в извлечениях из растительного сырья рассчитывали по значениям градуировочного графика для построения которого, использовали 0,1 мг/мл раствор стандартного образца CO танина. С этой целью 0,05 г (точная масса) CO танина помещали в мерную колбу вместимостью 100 мл, растворяли в 30 мл воды и объем в колбе доводили тем же растворителем до метки (раствор A).
1 мл полученного раствора переносили в мерную колбу вместимостью 10 мл. Объем раствора в колбе доводили водой до метки (раствор Б).
Серию растворов, содержащих по 1; 2; 3; 4; 5 мкг/мл CO танина готовили, помещая навески раствора Б в мерные колбы вместимостью 10 мл, прибавляли реактив Фолина–Чокалтеу и 20% водный раствор натрия карбоната, объем растворов в колбе доводили водой до метки.
Растворы перемешивали, колбы укупоривали и выдерживали при комнатной температуре в защищенном от света месте в течение 40 мин.
Оптическую плотность полученных растворов определяли спектрофотометрически в кварцевых кюветах с толщиной слоя 1 см при длине волны 725 нм относительно раствора сравнения.
Раствор сравнения представлял собой смесь реагентов без добавления CO танина (раствор B).
По результатам проведенных исследований строили график зависимости оптической плотности от концентрации танина (рис.1).

С учетом полученных значений рассчитывали сумму дубильных веществ, в пересчете на танин по формуле:

, где

Результаты
Результаты количественного определения дубильных веществ методом титрования представлены в табл. 1.

Таблица 1. Результаты количественного определения дубильных веществ методом перманганатометрии

Масса навески растительного сырья, г Объём перманганата калия (0,02 моль/л), израсходованного на титрование полученного извлечения из растительного сырья, мл Количество дубильных веществ, % (X i )

2,10250

15,34892

15,72%
0,154
Δ = 0,395
ε = 2,52%
S r = 0,024

2,03255

15,21262

2,18345

15,84713

2,24350

16,24333

2,12465

15,85257

2,07055

15,80574

Среднее значение содержания дубильных веществ в сырье составило 15,7%. Рассчитанное значение величины относительного стандартного отклонения (0,024%), которое не превышает 2%, что характеризует удовлетворительную сходимость полученных результатов.
Для определения правильности методики использовали метод добавки. С этой целью в колбу для титрования добавляли по 1 мл 0,05%, 0,1% и 0,15% CO танина и титровали трижды для каждого случая. Результаты проведенных исследований представлены в табл. 2.

Таблица 2. Определение правильности методики перманганатометрического титрования дубильных веществ

Количество добавленного СО танина, г Масса сырья, г Рассчитанное количество дубильных веществ, г Найденное количество дубильных веществ, г Открываемость, % Метрологические характеристики

0,0005

2,2435

0,0357

0,0353

98,87

99,91%
1,198
0,399
t расч. =0,23
t табл. =2,31

2,1247

0,0339

0,0340

100,29

2,0706

0,0330

0,0337

102,12

0,001

2,2435

0,0362

0,0357

98,61

2,1247

0,0344

0,0340

98,84

2,0706

0,0335

0,0336

100,51

0,0015

2,2435

0,0367

0,0366

99,73

2,1247

0,0349

0,0353

101,14

2,0706

0,0340

0,0337

99,12

Полученные результаты свидетельствуют о том, что рассчитанный коэффициент Стьюдента меньше табличного значения и методика не содержит систематической ошибки, что позволяет сделать вывод о ее правильности.
Для изучения линейности определяли зависимость найденных значений количественного содержания дубильных веществ от навески исследуемого растительного сырья. С этой целью проводили количественное определение танинов в шести навесках воздушно–сухого сырья манжетки обыкновенной, отличающихся по массе (табл. 3).

Таблица 3. Зависимость найденного содержания дубильных веществ от массы навески растительного сырья методом перманганатометрии


Навеска сырья, г

Объем калия перманганата, пошедший на титрование, мл

2,0706

0,3159

3,0013

10,8

0,4490

4,0595

13,0

0,5404

5,1180

15,3

0,6360

6,1385

18,2

0,7566

По полученным в ходе проведенных исследований данным строили график зависимости определенного содержания дубильных веществ от массы навески исследуемого растительного сырья (рис. 2) и рассчитывали коэффициент корреляции.

Рис. 2. График зависимости найденного количества дубильных веществ от массы навески воздушно сухого сырья манжетки обыкновенной

Рассчитанный коэффициент корелляции не превышал 0,95, что свидетельствует о линейности результатов определения содержания исследуемых веществ от массы навески анализируемого растительного сырья в обозначенном интервале концентраций.
Результаты количественного определения дубильных веществ в воздушно сухом сырье травы манжетки обыкновенной методом спектрофотометрии представлены в табл. 4.

Таблица 4. Результаты количественного определения дубильных веществ методом спектрофотометрии

Масса навески, г

Оптическая плотность раствора

Найденное количество дубильных веществ, % (X i )

Метрологические характеристики

1,02755

0,5957

7,30920

7,87340

7,84%
0,11
Δ = 0,28
ε = 3,61%
S r =0,034%

0,99745

0,6130

7,52147

8,34656

1,0068

0,5678

6,96687

7,65932

0,99580

0,5742

7,04539

7,83120

1,0060

0,5750

7,05521

7,76261

1,00670

0,5617

6,89202

7,57779

Среднее значение содержания дубильных веществ в растительном сырье составляет 7,8% при относительном стандартном отклонении (0,034%), не превышающем 2%, что характеризует удовлетворительную сходимость результатов.
Для определения правильности методики использовали метод добавки. С этой целью в колбу с первичным ацетоновым извлечением добавляли по 1 мл 0,05%, 0,1% и 0,15% раствора CO танина и далее проводили количественное определение дубильных веществ трижды для каждой концентрации. Результаты проведенных исследований представлены в табл. 5.

Дубильными веществами (танидами) называют растительные высокомолекулярные фенольные соединения, способные осаждать белки и обладающие вяжущим вкусом.

Термин “дубильные вещества” сложился исторически, благодаря способности этих соединений превращать сырую шкуру животных в прочную кожу, устойчивую к воздействию влаги и микроорганизмов. Использовать этот термин официально предложил в 1796 г Сеген для обозначения в экстрактах некоторых растений веществ, способных осуществлять процесс дубления.

Дубление - это сложное химическое взаимодействие танидов с молекулами коллагена - основного белка соединительной ткани. Дубящими свойствами обладают многоядерные фенолы, содержащие в молекуле более одного гидроксила. При плоском расположении танида на белковой молекуле между ними возникают устойчивые водородные связи:

Фрагмент молекулы белка Фрагмент молекулы танида

Прочность взаимодействия танида с белком зависит от числа водородных связей и лимитируется величиной молекулы полифенольного соединения. Молекулярная масса дубильных веществ может составлять до 20 000. При этом на 100 единиц молекулярной массы в танидах приходится по 1-2 фенольные оксигруппы. Поэтому количество образующихся водородных связей многочисленно и процесс дубления является необратимым. Гидрофобные радикалы, ориентированные во внешнюю среду, делают кожу недоступной для влаги и микроорганизмов.

Не все дубильные вещества способны к истинному дублению. Этим свойством отличаются соединения, имеющие молекулярную массу 1 000 и более. Полифенольные соединения с массой менее 1 000 не способны дубить кожу и обладают только вяжущим действием.

Дубильные вещества очень широко применяются в промышленности. Достаточно сказать, что мировое производство танидов превышает 1 500 000 тонн в год, а доля растительных танидов составляет до 50-60% от общего количества.

Распространение в растительном мире и роль дубильных веществ в растениях. Дубильные вещества широко встречаются у представителей покрыто- и голосемянных, водорослей, грибов, лишайников, в плаунах и папоротниках. Они содержатся во многих высших растениях, особенно двудольных. Наибольшее их количество выявлено в ряде представителей семейств Fabaceae, Myrtaceae, Rosaceae, Anacardiaceae, Fagaceae, Polygonaceae.

Дубильные вещества в растении находятся в клеточных вакуолях и при старении клеток адсорбируются на клеточных стенках. В больших количествах накапливаются в подземных органах, коре, но могут быть в листьях и плодах.

Дубильные вещества выполняют в растениях в основном защитные функции. При механическом повреждении тканей начинается усиленное образование дубильных веществ, сопровождающееся их окислительной конденсацией в поверхностных слоях, защищая тем самым растение от дальнейшего повреждения и негативного влияния болезнетворных микроорганизмов. Благодаря большому количеству фенольных гидроксилов дубильные вещества обладают выраженными бактериостатическими и фунгицидными свойствами, предохраняя тем самым растительные организмы от различных заболеваний.


Классификация дубильных веществ. В 1894 г. Г. Проктер, изучая конечные продукты пиролиза дубильных веществ, обнаружил 2 группы соединений - пирогалловые (образуется пирогаллол) и пирокатехиновые (при разложении образуется пирокатехин):

К. Фрейденберг в 1933 г. уточнил классификацию Г. Проктера. Он, как и Проктер, классифицировал дубильные вещества по конечным продуктам их распада, но не в условиях пиролиза, а при кислотном гидролизе. В зависимости от способности к гидролизу К. Фрейденберг предложил выделить две группы дубильных веществ:гидролизуемые и конденсированные. В настоящее время более часто пользуются класификацией К. Фрейденберга.

К группе гидролизуемых дубильных веществ относятся соединения, построенные по типу сложных эфиров и распадающиеся при кислотном гидролизе на составляющие компоненты. Центральным звеном чаще всего бывает глюкоза, реже - другие сахара или алициклические соединения (например, хинная кислота). Спиртовые гидроксилы центрального остатка могут быть связаны эфирной связью с галловой кислотой, образуя при этом группу галлотанинов , или эллаговой кислотой, образуя группу эллаготанинов .

Галлотанины - эфиры галловой кислоты, наиболее часто встречаемые в группе гидролизуемых дубильных веществ. Существуют моно-, ди-, три-, тетра-, пента- и полигаллоильные эфиры. Представителем моногаллоильных эфиров является b-D-глюкогаллин:

Примером полигаллоильных эфиров может служить китайский танин, структура которого впервые была установлена в 1963 г. Хэуорсом:

Эллаготанины являются сложными эфирами сахара и эллаговой кислоты или ее производными. Эллаговая кислота образуется при окислении двух молекул галловой кислоты до гексаоксидифеновой, которая тотчас же образует лактон – эллаговую кислоту:

Как и в предыдущем случае, сахарным компонентом эллаготанинов чаще всего выступает глюкоза.

Несахарные эфиры галловых кислот представляют собой сложные эфиры галловой кислоты и несахарного компонента, такого как хинная кислота, оксикоричная и др. Примером данной группы веществ может служить 3,4,5-тригаллоилхинная кислота.

Конденсированные дубильные вещества отличаются от гидролизуемых тем, что при кислотном гидролизе не происходит их расщепления на составляющие компоненты, а наоборот, под действием минеральных кислот образуются плотные красно-коричневые продукты полимеризации - флобафены.

Конденсированные дубильные вещества образованы главным образом катехинами и лейкоцианидинами, и, гораздо реже, другими восстановленными формами флавоноидов. Конденсированные дубильные вещества не относятся к группе «Гликозиды»: в конденсированных дубильных веществах сахарный компонент отсутствует.

Образование конденсированных дубильных веществ может происходить двумя путями. К. Фрейденберг (30-е годы XX в) установил, что образование конденсированных дубильных веществ - это неферментативный процесс аутоконденсации катехинов или лейкоцианидинов (или их перекрестная конденсация) в результате воздействия кислорода воздуха, тепла и кислой среды. Аутоконденсация сопровождается разрывом пиранового кольца катехинов и С-2 углеродный атом одной молекулы соединяется углерод-углеродной связью с С-6 или С-8 углеродным атомом другой молекулы. При этом может образовываться достаточно протяженная цепь:

По мнению другого ученого - Д. Хатуэя, конденсированные дубильные вещества могут образовываться в результате ферментативной окислительной конденсации молекул по типу “голова к хвосту” (кольцо А к кольцу В) или “хвост к хвосту” (кольцо В к кольцу В):

В растениях, содержащих конденсированные дубильные вещества, обязательно есть их предшественники - свободные катехины или лейкоцианидины. Часто встречаются смешанные конденсированные полимеры, состоящие из катехинов и лейкоцианидинов.

Как правило, в растениях одновременно присутствуют дубильные вещества как конденсированной, так и гидролизуемой групп.

Физико-химические свойства дубильных веществ . Дубильные вещества отличаются высокой молекулярной массой - до 20 000. Природные дубильные вещества, за небольшим исключением, известны до настоящего времени только в аморфном состоянии. Причина этого заключается в том, что эти вещества представляют собой смеси соединений, сходные по химической структуре, но различающиеся по молекулярной массе.

Дубильные вещества - это желтые или бурые соединения, образующие в воде коллоидные растворы. Растворимы в этаноле, ацетоне, бутаноле и не растворимы в растворителях с выраженной гидрофобностью - хлороформе, бензоле и т.п.

Галлотанины плохо растворимы в холодной воде и относительно хорошо - в горячей.

Дубильные вещества обладают оптической активностью, легко окисляются на воздухе.

Благодаря наличию фенольных гидроксилов осаждаются солями тяжелых металлов и образуют окрашенные соединения с Fe +3 .

Выделение дубильных веществ из растительного сырья. Поскольку дубильные вещества представляют собой смесь различных полифенолов, их выделение и анализ представляет определенную трудность.

Часто для получения суммы дубильных веществ сырье экстрагируют горячей водой (дубильные вещества плохо растворимы в холодной воде) и охлажденную вытяжку обрабатывают органическим растворителем (хлороформ, бензол и др.) для удаления липофильных веществ. Затем дубильные вещества осаждают солями тяжелых металлов с последующим разрушением комплекса серной кислотой или сульфидами.

Для получения фракции дубильных веществ, сходных по химической структуре, можно использовать экстракцию сырья диэтиловым эфиром, метиловым или этиловым спиртами с предварительным удалением липофильных компонентов с помощью растворителей с выраженной гидрофобностью – петролейным эфиром, бензолом, хлороформом.

Широко распространено выделение некоторых компонентов дубильных веществ осаждением из водных или водно-спиртовых растворов солями свинца. Полученные осадки затем обрабатывают разбавленной серной кислотой.

При выделении индивидуальных компонентов дубильных веществ используют хроматографические методы: адсорбционную хроматографию на целлюлозе, полиамиде; ионообменную на различных катионитах; распределительную на силикагеле; гельфильтрацию на молекулярных ситах.

Идентификацию индивидуальных компонентов дубильных веществ проводят с помощью хроматографии на бумаге или в тонком слое сорбента, с помощью спектрального анализа, качественных реакций и изучения продуктов расщепления.

Качественный анализ дубильных веществ . Качественные реакции на дубильные вещества можно разделить на две группы: реакции осаждения и цветные реакции. Для проведения качественных реакций сырье, чаще всего, экстрагируют горячей водой.

Реакции осаждения. 1. При взаимодействии дубильных веществ с 1% раствором желатина, приготовленном на 10% растворе натрия хлорида, образуется осадок или возникает помутнение раствора. При добавлении избытка желатина помутнение исчезает.

2. Таниды дают обильные осадки с алкалоидами (кофеин, пахикарпин), а также некоторыми азотистыми основаниями (уротропин, новокаин, дибазол).

3. При взаимодействии с 10% раствором уксуснокислого свинца дубильные вещества гидролизуемой группы образуют хлопьевидный осадок.

4. Дубильные вещества конденсированной группы образуют хлопьевидный осадок в реакции с бромной водой.

Цветные реакции. Дубильные вещества гидролизуемой группы с раствором железоаммонийных квасцов образуют черно-синие окрашенные соединения, а конденсированной группы - черно-зеленые.

Если в растении одновременно содержатся дубильные вещества и гидролизуемой и конденсированной группы, то вначале гидролизуемые таниды осаждают 10% раствором ацетата свинца, осадок отфильтровывают, а затем проводят реакцию фильтрата с раствором железоаммонийных квасцов. Появление темно-зеленой окраски свидетельствует о наличии веществ конденсированной группы.

Количественное определение дубильных веществ. При том, что существует около 100 различных способов количественного определения дубильных веществ, точный количественный анализ этой группы биологически активных веществ затруднен.

Среди широко применяемых способ количественного определения дубильных веществ можно выделить следующие.

1. Гравиметрические - основаны на количественном осаждении дубильных веществ желатином, солями тяжелых металлов и т.п.

2. Титриметрические - основаны на окислительных реакциях, прежде всего с перманганатом калия.

3. Фотоэлектроколориметрические - основаны на способности дубильных веществ образовывать устойчивые окрашенные продукты реакции с солями окисного железа, фосфорновольфрамовой кислотой и т.д.

Государственной Фармакопеей X и XI изданий рекомендован титриметрический способ количественного определения дубильных веществ.

ГОСТ 24027.2-80

Группа Р69

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СЫРЬЕ ЛЕКАРСТВЕННОЕ РАСТИТЕЛЬНОЕ

Методы определения влажности, содержания золы, экстрактивных и дубильных веществ, эфирного масла

Methods for determination of moisture, ash content, extractive and tannin materials, essential oil


Дата введения 1981-01-01

Постановлением Государственного комитета СССР по стандартам от 6 марта 1980 г. N 1038 срок введения установлен с 01.01.81

Ограничение срока действия снято по протоколу N 5-94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-12-94)

ВЗАМЕН ГОСТ 6076-74 в части методов определения влажности, содержания золы, экстрактивных и дубильных веществ, эфирного масла

ПЕРЕИЗДАНИЕ.


Настоящий стандарт распространяется на лекарственное растительное сырье и устанавливает методы определения влажности, содержания золы, экстрактивных, дубильных веществ и эфирного масла.

1. МЕТОД ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ

1.1. Метод определения влажности основан на определении потери в массе за счет гигроскопической влаги и летучих веществ при высушивании сырья до абсолютно сухого состояния.

1.2. Отбор проб

1.2.1. Отбор проб - по ГОСТ 24027.0-80 .

1.3. Аппаратура, материалы и реактивы



шкаф сушильный лабораторный по НД;

весы лабораторные по ГОСТ 24104-88 *;
______________
ГОСТ Р 53228-2008

весы аналитические по ГОСТ 24104-88 ;

разновесы по ГОСТ 7328-82 *;
______________
* На территории Российской Федерации действует ГОСТ 7328-2001 , здесь и далее по тексту. - Примечание изготовителя базы данных.

эксикатор по ГОСТ 25336-82 ;

совочек;

ножницы;

стаканчики для взвешивания (бюксы) с притертой крышкой по ГОСТ 25336-82 ;

щипцы тигельные;

вазелин технический;

кальций хлористый плавленый по НД.

1.4. Подготовка к испытанию

Аналитическую пробу быстро измельчают ножницами или секатором до размера частиц около 10 мм, перемешивают и берут две навески массой по 3-5 г, взвешенные с погрешностью не более 0,01 г. Каждую навеску помещают в предварительно взвешенную вместе с крышкой и пронумерованную бюксу.

При пересчете содержания золы и действующих веществ на абсолютно сухое сырье определяют потерю в массе при высушивании в пробах, подготовленных для соответствующих испытаний. При этом одновременно с навесками для определения золы и действующих веществ берут две навески сырья массой по 1-2 г, взвешенные с погрешностью не более 0,0005 г.

1.5. Проведение испытания

В сушильный шкаф, нагретый до 100-105 °С, быстро помещают подготовленные бюксы с навесками вместе со снятыми крышками. При этом температура в шкафу падает. Время, в течение которого сырье должно сушиться, отсчитывают с момента, когда температура в шкафу достигает 100-105 °С. Высушивание проводят до постоянной массы.

Постоянная масса считается достигнутой, если разница между двумя последующими взвешиваниями после 30 мин высушивания и 30 мин охлаждения в эксикаторе не превышает 0,01 г.

При пересчете содержания золы и действующих веществ на абсолютно сухое сырье высушивание проводят до тех пор, пока разница между двумя последующими взвешиваниями не будет превышать 0,0005 г.

Первое взвешивание корней, семян, плодов и коры проводят через 3 ч, листьев, цветков и трав - через 2 ч. Бюксы с навесками вынимают из шкафа тигельными щипцами и помещают на 30 мин для охлаждения в эксикатор, на дне которого находится безводный хлористый кальций. Охлажденные бюксы закрывают крышками и взвешивают. Хлористый кальций периодически прокаливают или заменяют новым.


1.6. Обработка результатов

Влажность сырья () в процентах вычисляют по формуле

где - масса сырья до высушивания, г;

Масса сырья после высушивания, г.

За окончательный результат испытания принимают среднее арифметическое результатов двух параллельных определений, вычисленных до десятых долей процента, допускаемое расхождение между которыми не должно превышать 0,5%.

2. МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ЗОЛЫ

2.1. Метод определения содержания золы основан на определении несгораемого остатка неорганических веществ, остающегося после сжигания и прокаливания сырья. Золу делят на:

золу общую, представляющую собой сумму минеральных веществ, свойственных растению, и посторонних минеральных примесей (земля, песок, камешки, пыль);

золу, нерастворимую в 10%-ной соляной кислоте, представляющую собой остаток после обработки общей золы соляной кислотой и состоящую главным образом из кремнезема.

2.2. Отбор проб

2.2.1. Отбор проб - по ГОСТ 24027.0-80 .

2.3. Аппаратура и реактивы

Для проведения испытания применяют:

весы лабораторные по ГОСТ 24104-88 ;

весы аналитические по ГОСТ 24104-88 ;

разновесы по ГОСТ 7328-82 ;

сито по ТУ 23.2.2068-89;

тигли фарфоровые по ГОСТ 9147-80 ;

кальций хлористый плавленый по НТД;

эксикатор по ГОСТ 25336-82 ;

горелку газовую или электроплитку бытовую по НТД;

печь муфельную;

баню водяную;

стекла часовые;

фильтр беззольный;

кислоту азотную по ГОСТ 4461-77 ;

аммоний азотнокислый, ч.д.а., 10%-ный раствор;

кислоту соляную по ГОСТ 3118-77 , х.ч., 10%-ный раствор;

перекись водорода (пергидроль) по ГОСТ 10929-76 , 5%-ный раствор;

серебро азотнокислое по ГОСТ 1277-75 , ч.д.а., 2%-ный раствор;

воду дистиллированную по ГОСТ 6709-72 ;


2.4. Подготовка к испытанию

Аналитическую пробу сырья измельчают и просеивают сквозь сито с отверстиями диаметром 2 мм.

В предварительно прокаленный до постоянной массы фарфоровый тигель берут навеску массой 1-3 г для определения общей золы и 5 г для определения золы, нерастворимой в 10%-ной соляной кислоте. Навеску взвешивают с погрешностью не более 0,0005 г.

2.5. Проведение испытания

Сырье в тигле осторожно обугливают над слабым пламенем газовой горелки, стараясь, чтобы пламя не касалось дна тигля, или на электроплитке. При этом на нее помещают асбестовую сетку. После полного обугливания сырья тигель переносят в муфельную печь для сжигания угля и полного прокаливания остатка. Прокаливание ведут при красном калении (550-650 °С) до постоянной массы, избегая сплавления золы и спекания ее со стенками тигля. По окончании прокаливания, тигель охлаждают в течение 2 ч, затем ставят в эксикатор, на дне которого находится безводный хлористый кальций, охлаждают и взвешивают. Постоянная масса считается достигнутой, если разница между двумя последующими взвешиваниями не превышает 0,0005 г.

Если после охлаждения остаток еще содержит частицы угля, то к нему прибавляют несколько капель 5%-ного раствора перекиси водорода, концентрированной азотной кислоты или 10%-ного раствора азотнокислого аммония, выпаривают под тягой на водяной бане и вновь прокаливают до тех пор, пока остаток примет равномерную окраску. В случае необходимости такую операцию повторяют несколько раз.

Для определения содержания золы, нерастворимой в 10%-ном растворе соляной кислоты, в тигель с общей золой приливают 15 см 10%-ного раствора соляной кислоты (плотность 1,050 г/см); тигель покрывают часовым стеклом и нагревают на кипящей водяной бане в течение 10 мин. Затем тигель снимают и после остывания содержимое фильтруют через беззольный фильтр. Тигель, часовое стекло и фильтр промывают дистиллированной водой до прекращения появления мути в промывных водах от капли 2%-ного раствора нитрата серебра. Фильтр помещают в тигель, высушивают, осторожно сжигают в тигле после чего тигель прокаливают до постоянной массы остатка.

Проводят два параллельных определения.

2.6. Обработка результатов

Содержание общей золы () в процентах в абсолютно сухом сырье вычисляют по формуле

где - масса золы, г;

Масса сырья, г;


Содержание золы, не растворимой в 10%-ном растворе соляной кислоты (), в процентах в абсолютно сухом сырье вычисляют по формуле

где - масса золы, г;

- масса золы фильтра (если золы последнего более 0,002 г);

- масса сырья, г;

- потеря в массе при высушивании сырья, %.

За окончательный результат испытания принимают среднее арифметическое результатов двух параллельных определений, вычисленных до сотых долей процента для сырья с содержанием золы (общей или нерастворимой) не более 5% и до десятых долей процента - для сырья с содержанием золы (общей или нерастворимой) более 5%, допускаемые расхождения между которыми не должны превышать 0,1% для сырья с содержанием общей или нерастворимой золы 5% и 0,5% для сырья с содержанием общей или нерастворимой золы более 5%.

3. МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ЭКСТРАКТИВНЫХ ВЕЩЕСТВ

3.1. Отбор проб

3.1.1. Отбор проб - по ГОСТ 24027.0-80 .

3.2. Аппаратура и материалы

Для проведения испытания применяют:

весы лабораторные по ГОСТ 24104-88 ;

чашки фарфоровые диаметром 7-9 см по ГОСТ 9147-80 ;

баню водяную;

эксикатор по ГОСТ 25336-82 ;

колбу коническую вместимостью 250 см по ГОСТ 25336-82 ;

пипетки вместимостью 25 см по НТД;

холодильник стеклянный лабораторный по ГОСТ 25336-82 ;

сита по ТУ 23.2.2068-89;

мельницу электрическую лабораторную по НТД.

3.3. Подготовка к испытанию

Аналитическую пробу сырья измельчают и просеивают сквозь сито с отверстиями диаметром 1 мм, после чего отбирают навеску массой 1 г.

3.4. Проведение испытания

Навеску сырья помещают в коническую колбу, приливают 50 см растворителя, указанного в нормативно-техническом документе на конкретное сырье, колбу закрывают пробкой, взвешивают с погрешностью не более 0,01 г и оставляют на 1 ч. Затем колбу соединяют с обратным холодильником, нагревают до кипения и поддерживают слабое кипение жидкости в течение 2 ч. После охлаждения колбу с содержимым вновь закрывают той же пробкой, взвешивают и потерю в массе дополняют тем же растворителем. Содержимое тщательно взбалтывают и фильтруют через сухой бумажный фильтр в сухую колбу вместимостью 150-200 см. 25 см фильтрата пипеткой переносят в фарфоровую чашку диаметром 7-9 см, предварительно высушенную при 100-105 °С до постоянной массы и взвешенную на аналитических весах, выпаривают на водяной бане досуха, сушат при температуре 100-105 °С в течение 3 ч, затем охлаждают в течение 30 мин в эксикаторе, на дне которого находится безводный хлористый кальций и взвешивают.

Проводят два параллельных определения.

3.5. Обработка результатов

Содержание экстрактивных веществ () в процентах в абсолютно сухом сырье вычисляют по формуле

где - масса сухого остатка в чашке, г;

- масса сырья, г;

- потеря в массе при высушивании сырья, г.

За окончательный результат испытания принимают среднее арифметическое результатов двух параллельных определений.

4. МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ДУБИЛЬНЫХ ВЕЩЕСТВ

4.1. Отбор проб

4.1.1. Отбор проб - по ГОСТ 24027.0-80 .

4.2. Аппаратура, материалы и реактивы

Для проведения испытания применяют:

весы лабораторные по ГОСТ 24104-88 ;

весы аналитические по ГОСТ 24104-88 ;

разновесы по ГОСТ 7328-82 ;

сито по ТУ 23.2.2068-89 с отверстиями диаметром 3 мм;

колбы конические вместимостью 500 и 750 см по ГОСТ 25336-82 ;

баню водяную;

бюретки вместимостью 25-50 см по НТД;

пипетки вместимостью 2, 20, 25 см по НТД;

фильтры стеклянные;

склянки оранжевого стекла с притертыми пробками;

вату медицинскую по ГОСТ 5556-81 ;

воду дистиллированную по ГОСТ 6709-72 ;

индиго-5, 6-дисульфокислоты динатриевую соль (индигокармин);

калий йодистый по ГОСТ 4232-74 ;

кислоту серную по ГОСТ 4204-77 ;

кислоту соляную по ГОСТ 3118-77 ;

крахмал растворимый по ГОСТ 10163-76 ;

калий марганцовокислый по ГОСТ 5777-84 ;

натрия тиосульфат кристаллический по ГОСТ 244-76 ;

калий двухромовокислый по ГОСТ 4220-75 , х.ч.;

натрий углекислый безводный по ГОСТ 83-79 , х.ч.;

мельницу электрическую лабораторную по НТД.

4.3. Подготовка к испытанию

Для приготовления 0,1 н. раствора марганцовокислого калия 3,3 г марганцовокислого калия растворяют в 1000 см воды и кипятят в течение 10 мин. Колбу закрывают пробкой, оставляют на двое суток в темном месте, затем фильтруют через стеклянный фильтр.

Для установки титра раствора марганцовокислого калия точно отмеривают из бюретки 25 см приготовленного раствора в склянку с притертой пробкой, содержащую 20 см раствора йодида калия. Подкисляют 2 см разведенной серной кислоты, закрывают пробкой, смоченной раствором йодида калия, и оставляют в течение 10 мин в темном месте. Разбавляют 200 см воды, обмывая пробку водой, и выделившийся йод титруют 0,1 н. раствором тиосульфата натрия до обесцвечивания (индикатор - крахмал).


где - объем раствора тиосульфата натрия, израсходованного на титрование, см;

- объем раствора марганцовокислого калия, взятого для установки титра (25 см);

- поправочный коэффициент раствора тиосульфата натрия.

Для приготовления разведенной серной кислоты к 5 частям воды осторожно приливают 1 часть концентрированной серной кислоты.

Для приготовления раствора йодистого калия 10 г реактива растворяют в свежепрокипяченной и охлажденной воде и разбавляют такой же водой до 100 см. Раствор должен быть бесцветным. Раствор необходимо хранить в банках оранжевого стекла с притертыми пробками в защищенном от света месте.

Для приготовления 0,1 н. раствора тиосульфата натрия 26 г тиосульфата натрия и 0,1 г углекислого натрия растворяют в свежепрокипяченной и охлажденной воде и доводят такой же водой до 1000 см. Раствору дают стоять 10 суток в защищенном от света месте. При наличии осадка жидкость сифонируют.

Титр раствора тиосульфата натрия устанавливают по двухромовокислому калию. Для этого около 0,15 г перекристаллизованного из горячей воды и высушенного при 130-150 °С до постоянной массы мелкорастертого двухромовокислого калия взвешивают с погрешностью не более 0,0002 г и растворяют в 50 см воды в склянке с притертой пробкой. Прибавляют 2 г йодистого калия, растворенного в 10 см воды, 5 см соляной кислоты, закрывают пробкой, смоченной раствором йодистого калия, и оставляют в темном месте в течение 10 мин. Разбавляют 200 см воды, обмывая пробку водой, и титруют приготовленным раствором тиосульфата натрия до зеленовато-желтого окрашивания. Затем приливают 2-3 см раствора крахмала и продолжают титровать до перехода синей окраски в светло-зеленую.

Поправочный коэффициент () вычисляют по формуле

где 0,004904 - количество двухромовокислого калия, содержащегося в 1 см 0,1 н. раствора, г;

- навеска двухромовокислого калия, г;

- объем раствора тиосульфата, см.

Для приготовления индигосульфокислоты 1 г индигокармина растворяют в 25 см концентрированной серной кислоты, затем прибавляют еще 25 см концентрированной серной кислоты и разбавляют дистиллированной водой до 1000 см, осторожно приливая раствор в воду.

От аналитической пробы сырья, измельченного и просеянного сквозь сито с отверстиями диаметром 3 мм, берут навеску массой 2 г с погрешностью не более 0,001 г

4.4. Проведение испытания

Сырье помещают в коническую колбу вместимостью 500 см, заливают 250 см нагретой до кипения воды и нагревают с обратным холодильником на кипящей водяной бане в течение 30 мин при периодическом перемешивании. Жидкость отстаивают, охлаждая до комнатной температуры, и декантируют около 100 см в коническую колбу вместимостью 200-250 см через вату, чтобы частицы сырья не попали в колбу. Затем отбирают пипеткой 25 см полученной жидкости в другую коническую колбу вместимостью 750 см, добавляют 500 см воды, 25 см раствора индигосульфокислоты и титруют при постоянном перемешивании 0,1 н. раствором калия марганцовокислого до золотисто-желтого окрашивания, сравнивая его с окраской раствора контрольного испытания.

Для проведения контрольного испытания в коническую колбу вместимостью 750 см, наливают 525 см дистиллированной воды, добавляют 25 см раствора индигосульфокислоты и титруют при постоянном перемешивании 0,1 н. раствором марганцовокислого калия до золотисто-желтого окрашив

4.5. Обработка результатов

Содержание дубильных веществ () в процентах в абсолютно сухом сырье вычисляют по формуле

где - объем точно 0,1 н. раствора марганцовокислого калия, израсходованного на титрование извлечения, см;

- объем точно 0,1 н. раствора марганцовокислого калия, израсходованного на титрование в контрольном анализе, см;

0,004157 - количество дубильных веществ, соответствующее 1 см точно 0,1 н. раствора марганцовокислого калия (в пересчете на танин), г;

- масса сырья, г;

- потеря в массе при высушивании сырья, %;

250 - вместимость мерной колбы, см;

25 - объем жидкого извлечения, взятого для титрования, см.

5. МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ЭФИРНОГО МАСЛА

5.1. Сущность метода заключается в перегонке из растительного сырья с водяным паром эфирного масла и последующем измерении его объема, выраженного в процентах по отношению к абсолютно сухому сырью.

Определение проводят методом 1, 2а или 2б. Метод 2б используют в тех случаях, когда сырье содержит эфирные масла, которые при перегонке претерпевают изменения, образуют эмульсию, легко загустевают или имеют плотность, близкую к единице или больше единицы.

Масса навески сырья взятого для анализа, степень его измельчения, время перегонки - по нормативно-техническому документу на конкретное растительное сырье.

5.2. Отбор проб

5.2.1. Отбор проб - по ГОСТ 24027.0-80 .

5.3. Определение содержания эфирного масла методом 1 (Гинзбурга)

5.3.1. Аппаратура, материалы и реактивы

Для проведения испытания применяют:

весы лабораторные по ГОСТ 24104-88 ;

мельницу электрическую лабораторную по НТД;

колбу широкогорлую круглодонную вместимостью 1000 см по ГОСТ 25336-82 ;

колбу плоскодонную вместимостью 1000 см по
пробку резиновую;

ножницы;

ацетон по ГОСТ 2603-79 , ч.д.а.

5.3.2. Проведение испытания

Навеску измельченного сырья помещают в широкогорлую круглодонную или плоскодонную колбу, наливают 300 см воды и закрывают резиновой пробкой с обратным шариковым холодильником. В пробке снизу укрепляют металлические крючки, на которые при помощи тонкой проволоки подвешивают градуированный приемник так, чтобы конец холодильника находился точно под воронкообразным расширением приемника на расстоянии около 1 мм, не касаясь его. Приемник должен свободно помещаться в горле колбы, не прикасаясь к стенкам горла, и отстоять от уровня воды не менее чем на 50 мм (черт.1). Колбу с содержимым нагревают до кипения и поддерживают его в течение времени, указанного в нормативно-техническом документе на конкретное сырье.

Черт.1. - Прибор для определения содержания эфирного масла методом 1

Прибор для определения содержания эфирного масла методом 1 (Гинзбурга)

1 - колба; 2 - резиновая пробка; 3 - холодильник; 4 - градуированный приемник

Пары воды и эфирного масла конденсируются в холодильнике и жидкость стекает в приемник. Масло отстаивается в градуированном колене приемника, а вода через меньшее колено приемника вытекает обратно в колбу.

Объем масла в градуированной части приемника определяют после окончания перегонки и охлаждения колбы до комнатной температуры. Прибор после шести-восьми определений промывают ацетоном, затем водой.

5.3.3. Обработка результатов




- масса сырья, г;

- потеря в массе при высушивании сырья, %.

5.4. Определение содержания эфирного масла методом 2а (Клевенджера)
;

электромельницу;

мельницу электрическую лабораторную по НД.

Черт.2. - Прибор для определения содержания эфирного масла методами 2а и 2б

Прибор для определения содержания эфирного масла методами 2а и 2б (Клевенджера)

1 - колба; 2 - паропроводная изогнутая трубка; 3 - холодильник; 4 - градуированный приемник; 5 - спускной кран; 6 - расширение приемника; 7 - боковая трубка приемника; 8 - резиновый шланг; 9 - сливная трубка

5.4.2. Подготовка к испытанию

Перед каждым определением прибор очищают, пропуская пар в течение 15-20 мин.

5.4.3. Проведение испытания

Навеску измельченного растительного сырья помещают в колбу, приливают 300 см воды, колбу соединяют через шлиф с паропроводящей трубкой и заполняют водой градуированную и сливную трубки через кран при помощи резинового шланга, оканчивающегося воронкой. Содержимое колбы нагревают до кипения и кипятят с интенсивностью, при которой скорость стекания дистиллята должна быть 60-65 капель в минуту в течение времени, указанного в нормативно-техническом документе на конкретное сырье. Через 5 мин после окончания перегонки замеряют объем эфирного масла в градуированной части приемника. Для этого открывают кран и спускают часть дистиллята до уровня градуированной трубки.

5.4.4. Обработка результатов

Содержание эфирного масла () в процентах в абсолютно сухом сырье вычисляют по формуле

где - объем эфирного масла, см;

- масса сырья, г;

- потеря в массе при высушивании сырья, %.

5.5. Определение содержания эфирного масла методом 2б

5.5.1. Аппаратура и реактивы

Для проведения испытания применяют аппаратуру, указанную в п.5.4.1, и декалин.

5.5.2. Проведение испытания

Навеску измельченного растительного сырья помещают в колбу, приливают 300 см воды, колбу соединяют через шлиф с паропроводной трубкой и заполняют водой градуированную и сливную трубки через кран при помощи резинового шланга, оканчивающегося воронкой. Затем через воздушную трубку при помощи пипетки приливают в приемник около 0,5 мл декалина и точно измеряют объем взятого декалина, опуская уровень жидкости в градуированную часть трубки. Далее испытание проводят по п.5.4.3.

Проводят два параллельных определения.

5.5.3. Обработка результатов

Содержание эфирного масла () в процентах в абсолютно сухом сырье вычисляют по формуле

где - объем раствора масла в декалине, см;

- объем декалина, см;

- масса навески сырья, г;

- потеря в массе при высушивании сырья, %.

За окончательный результат испытаний принимают среднее арифметическое результатов двух параллельных определений, вычисленное до сотых долей процента.



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
Лекарственное растительное сырье. Часть 2.
Корни, плоды, сырье: Сб. ГОСТов. -
М.: ИПК Издательство стандартов, 1999

1.Реакция Стиасни – с 40 % раствором формальдегида и конц. HCl -

Конденсированные дубильные вещества образуют осадок кирпично-красного цвета

2.Бромная вода (5 г брома в 1 л воды) - к 2-3 мл испытуемого раствора прибавляют по каплям бромную воду до появления в растворе запаха брома; в случае присутствия конденсированных дубил ьных веществ образуется оранжевый или желтый осадок.

3. Окрашивание с солями трехвалентного железа, железоаммонийными квасцами –

черно-синее (дубильные вещества гидролизуемой группы, которые являются производными пирогаллола)

или черно-зеленое (дубильные вещества конденсированной группы, которые являются производными пирокатехина).

4.Катехины дают красное окрашивание с ванилином

(в присутствии конц. HCl или 70 %-ной H 2 SO 4 развивается яркая красная окраска).

Катехины образуют при этой реакции окрашенный продукт следующего строения:

  1. Реакцией отличающей пирогалловые танниды от пирокатехиновых является реакция нитрозометилуретаном.

При кипячении растворов дубильных веществ с нитрозометилуретаном танниды пирокатехинового ряда осаждаются полностью,

а присутствие пирогалловых таннидов можно обнаружить в фильтрате путем прибавления железоаммиачных квасцов и натрия ацетата – фильтрат окрашивается в фиолетовый цвет.

  1. Свободная эллаговая кислота дает красно-фиолетовую окраску при добавлении нескольких кристаллов нитрита натрия и трех-четырех капель уксусной кислоты.

7. Для обнаружения связанной эллаговой кислоты (или гаксаоксидифеновой) уксусную кислоту заменяют 0,1 н. серной или соляной кислотой (кармино-красная окраска, переходящая в синюю).

8. Дубильные вещества с белками создают непроницаемую для воды пленку (дубление). Вызывая частичное свертывание белков, они образуют на слизистых оболочках и раневых поверхностях защитную пленку.

9. При соприкосновении с воздухом (например, резке свежих корневищ) дубильные вещества легко окисляются , превращаясь во флобафены или красени, которые обусловливают темно-бурую окраску многих кор и других органов, настоев.

Флобафены нерастворимы в холодной воде, растворяются в горячей воде, окрашивая отвары и настой в бурый цвет.

10. С 10 %-ным раствором среднего ацетата свинца (одновременно добавляют 10 %-ный раствор уксусной кислоты) :

образуется белый осадок, нерастворимый в уксусной кислоте – дубильные вещества гидролизуемой группы

(осадок отфильтровывают и в фильтрате определяют содержание конденсированных дубильных веществ, с 1 %-ным раствором железоаммонийных квасцов – черно-зеленое окрашивание);

белый осадок, растворимый в уксусной кислоте – дубильные вещества конденсированной группы.

11. Для идентификации отдельных соединений используют хроматографический анализ , рассматривая в УФ-свете. Обработку хроматограмм производят раствором железа хлорида или ванилиновым реактивом

Структуру устанавливают с помощью ИК-спектров, ПМР-спектров.

Реакция с 1 %-ным спиртовым раствором железоаммониевых квасцов является фармакопейной , проводится с отваром из сырья – кора дуба, корневище змеевика, соплодия ольхи, плоды черники;

А также непосредственно в сухом сырье – кора дуба, кора калины, корневища бадана.

Количественное определение.

1. Гравиметрические или весовые методы – основаны на количественном осаждении дубильных веществ желатином, ионами тяжелых металлов или адсорбцией кожным (гольевым) порошком.

Официальным в дубильно-экстрактовой промышленности является весовой единый метод (ВЕМ):

В водных вытяжках из растительного материала вначале определяют общее количество растворимых веществ (сухой остаток) путем высушивания определенного объема вытяжки до постоянной массы;

затем из вытяжки удаляют дубильные вещества, обрабатывая ее обезжиренным кожным порошком; после отделения осадка в фильтрате вновь устанавливают количество сухого остатка.

Разность в массе сухого остатка до и после обработки вытяжки кожным порошком показывает количество подлинных таннидов.

2. Титриметрические методы .

К ним относятся:

1) Желатиновый метод - Метод Якимова и Курницкой – основан на способности дубильных веществ образовывать нерастворимые комплексы с белками. Водные извлечения из сырья титруют 1 % раствором желатина, в точке эквивалентности комплексы желатино-таннаты растворяются в избытке реактива.

Титр устанавливают по чистому таннину. Точку валентности определяют путем отбора наименьшего объема титрованного раствора, вызывающего полное осаждение дубильных веществ.

Метод наиболее точный , т.к. позволяет определить количество истинных дубильных веществ.

Недостатки: длительность определения и трудность установления точки эквивалености.

2) Перманганатометрический метод (метод Левенталя в модификации Курсанова). Это фармакопейный метод, основан на легкой окисляемости перманганатом калия в кислой среде в присутствии индикатора и катализатора индигосульфокислоты , которая в точке эквивалентности раствора меняется от синего до золотисто-желтого.

Особенности определения, позволяющие оттитровать только макромолекулы дубильных веществ: титрование проводится в сильно разбавленных растворах (извлечение разбавляеттся в 20 раз) при комнатной температуре в кислой среде, перманганат добавляется медленно, по каплям, при интенсивном перемешивании.

Метод экономичный, быстрый, прост в исполнении, но недостаточно точен, так как перманганат калия окисляет частично и низкомолекулярные фенольные соединения.

3) Для количественного определения таннина в листьях сумаха и скумпии используется метод осаждения дубильных веществ сульфатом цинка с последующим комплексонометрическимтитрованием трилоном Б в присутствии ксиленолового оранжевого.

Физико-химические методы.

1) Фотоэлектроколориметрические - основаны на способности ДВ образовывать окрашенные соединения с солями трехвалентного железа, фосфорно-вольфрамовой кислотой, реактивом Фолина-Дениса и др.

2) Хроматоспектрофотометрические и нефелометрические методы используют в научных исследованиях.