Клетка которая синтезирует антитела иммуноглобулины. Как известно, иммуноглобулины синтезируются клетками, которые образуются в результате дифференцировки полипотентной стволовой клетки

Антитела (иммуноглобулины, ИГ, Ig) - особый класс гликопротеинов, присутствующих на поверхности B-лимфоцитов в виде мембраносвязанных рецепторов и в сыворотке крови и тканевой жидкости в виде растворимых молекул, и обладающих способностью очень избирательно связываться с конкретными видами молекул, которые в связи с этим называютантигенами. Антитела являются важнейшим фактором специфического гуморального иммунитета. Антитела используются иммунной системой для идентификации и нейтрализации чужеродных объектов - например, бактерий и вирусов. Антитела выполняют две функции: антиген-связывающую и эффекторную (вызывают тот или иной иммунный ответ, например, запускают классическую схему активации комплемента).

Антитела синтезируются плазматическими клетками, которыми становятся некоторые В-лимфоциты, в ответ на присутствие антигенов. Для каждого антигена формируются соответствующие ему специализировавшиеся плазматические клетки, вырабатывающие специфичные для этого антигена антитела. Антитела распознают антигены, связываясь с определённым эпитопом - характерным фрагментом поверхности или линейной аминокислотной цепи антигена.

Антитела представляют собой белки глобулиновой природы (иммуноглобулины) образующиеся в организме под воздействием антигена и обладающие способностью избирательно связываться с ним. Существуют пять разновидностей молекул (классов) иммуноглобулинов с молекулярной массой от 150 до 900 тыс. дальтон: IgM, lgG, IgA, IgE, IgD. Молекулы иммуноглобулинов состоят из двух легких (L) и двух тяжелых (Н) полипептидных цепей, соединенных между собой дисульфидными связями. Оба типа цепей, соединенных между собой, обладают антигенностью. У тяжелых цепей она специфична для каждого класса иммуноглобулинов и соответственно классам Н-цепи обозначаются m , g , a , e , s . Легкие цепи в антигенном отношении делятся на две разновидности - X и l , одинаковые для, разных классов. Антигенные различия тяжелых цепей используют для получения антисывороток, позволяющих выявить наличие в исследуемом материале иммуноглобулинов того или иного класса. Легкие цепи IgG состоят из двух участков (доменов): вариабельных (VL) и константных (CL). Тяжелые цепи включают в себя один вариабельный (V Н) и 3 константных участка (CH 1 , CH 2 , СН 3). Вариабельные участки легких и тяжелых цепей формируют активные центры антител (VL -VH). Участок CL - CH 1 определяет небольшие различия в последовательности расположения аминокислот у индивидуумов одного и того же вида (аллоантигенные различия молекул IgM). Область CH 2 -CH 2 участвует в фиксации и активации комплемента, а область СН 3 -СН 3 - в фиксации антитела к клеткам (лимфоцитам, макрофагам, тучным клеткам). Данный тип строения молекулы характерен и для всех остальных классов иммуноглобулинов, различия заключаются в дополнительной организации этой основной единицы. Так, Н-цепь IgM состоит не из 4, а из 5 доменов, а вся молекула IgM представляет собой пентамер молекулы IgG, соединенный дополнительными полипептидными
J-цепями. IgA может быть в форме мономеров, димеров и секреторного IgA. Последние две формы имеют дополнительные (димеры) J или J и S цепи (секреторный). Другие свойства антител представлены в таблице 5.

Таблица 5.

Основные характеристики иммуноглобулинов человека

© п/п Показатели IgM IgG IgA IgE IgD
1. Молекулярная масса 900т. 150т. 170т. и 300т. 190т. 180т.
2. Уровень в крови в г/л 0,5 - 1,8 6 -16 1 - 5 0,00002 0,03 - 0,04
3. Тип тяжелых цепей m 1 - m 2 g 1 - g 4 a 1 - a 2 e s
4. Формула 5 H5L 2H2L 4H4L 2H2L 2H2L
5. Фиксация С ++++ ++ + S - -
6. Нейтрализация токсинов + + + - -
7. Агглютинация + + + - -
8. Бактериолиз + + ? - -
9. Прохождение плаценты - + - - -

Молекула антитела связывается с детерминантой антигена не целиком, а лишь определенной своей частью, называемой активным центром. Активный центр представляет собой полость или щель, соответствующую пространственной конфигурации детерминантной группы антигена. Один из активных центров по разным причинам может быть функционально инертным. Такие антитела называются неполными. Их появлению обычно предшествует образование полных, т. е. антител с двумя (IgG) активными центрами. Неполные антитела встречаются у разных классов иммуноглобулинов.
Территориально эти клетки располагаются в селезенке, лимфоузлах, костном мозге, лимфоидных образованиях слизистых оболочек.
При первичном контакте организма с антигеном и антителообразовании различают индуктивную и продуктивные фазы. Продолжительность первой фазы составляет около 2 суток. В этот период происходит пролиферация и дифференцировка лимфоидных клеток, развитие плазмобластической реакции. Вслед за индуктивной наступает продуктивная фаза. В сыворотке крови антитела начинают определяться с З-го дня после контакта с антигеном. Эти антитела относятся к классу IgM. С 5-7 дня происходит постепенная смена синтеза IgM на синтез IgG той же специфичности. Обычно к 12-15 дню кривая антителообразования достигает максимума, далее уровень антител начинает снижаться, но определенное их количество можно обнаружить и через много месяцев, а иногда и лет. При повторном контакте организма с тем же антигеном индуктивная фаза занимает лишь несколько часов. Продуктивная фаза протекает быстрее и интенсивнее, осуществляется синтез преимущественно IgG.

Иммуноглобулины всех изотипов бифункциональны. Это означает, что иммуноглобулин любого типараспознает и связывает антиген, а затем усиливает киллинг и/или удаление иммунных комплексов, сформированных в результате активации эффекторных механизмов.

Одна область молекулы антител (Fab) определяет её антигенную специфичность, а другая (Fc) осуществляет эффекторные функции: связывание с рецепторами, которые экспрессированы на клетках организма (например, фагоцитах); связывание с первым компонентом (C1q) системы комплемента для инициации классического пути каскада комплемента.

· IgG является основным иммуноглобулином сыворотки здорового человека (составляет 70-75 % всей фракции иммуноглобулинов), наиболее активен во вторичном иммунном ответеи антитоксическом иммунитете. Благодаря малым размерам (коэффициент седиментации 7S, молекулярная масса 146 кДа) является единственной фракцией иммуноглобулинов, способной к транспорту через плацентарный барьер и тем самым обеспечивающей иммунитет плода и новорожденного. В составе IgG 2-3 % углеводов; два антигенсвязывающих F ab -фрагмента и один F C -фрагмент. F ab -фрагмент (50-52 кДа) состоит из целой L-цепи и N-концевой половины H-цепи, соединённых между собой дисульфидной связью, тогда как F C -фрагмент (48 кДа) образован C-концевыми половинами H-цепей. Всего в молекуле IgG 12 доменов (участки, сформированные из β-структуры и α-спиралей полипептидных цепей Ig в виде неупорядоченных образований, связанных между собой дисульфидными мостиками аминокислотных остатков внутри каждой цепи): по 4 на тяжёлых и по 2 на лёгких цепях.

· IgM представляют собой пентамер основной четырёхцепочечной единицы, содержащей две μ-цепи. При этом каждый пентамер содержит одну копию полипептида с J-цепью (20 кДа), который синтезируется антителообразующей клеткой и ковалентно связывается между двумя соседними F C -фрагментами иммуноглобулина. Появляются при первичном иммунном ответе B-лимфоцитами на неизвестный антиген, составляют до 10 % фракции иммуноглобулинов. Являются наиболее крупными иммуноглобулинами (970 кДа). Содержат 10-12 % углеводов. Образование IgM происходит ещё в пре-B-лимфоцитах, в которых первично синтезируются из μ-цепи; синтез лёгких цепей в пре-B-клетках обеспечивает их связывание с μ-цепями, в результате образуются функционально активные IgM, которые встраиваются в поверхностные структуры плазматической мембраны, выполняя роль антиген распознающего рецептора; с этого момента клетки пре-B-лимфоцитов становятся зрелыми и способны участвовать в иммунном ответе.

· IgA сывороточный IgA составляет 15-20 % всей фракции иммуноглобулинов, при этом 80 % молекул IgA представлено в мономерной форме у человека. Основной функцией IgA является защита слизистых оболочек дыхательных, мочеполовых путей и желудочно-кишечного тракта от инфекций. Секреторный IgA представлен в димерной форме в комплексесекреторным компонентом, содержится в серозно-слизистых секретах (например в слюне, слезах, молозиве, молоке, отделяемом слизистой оболочки мочеполовой и респираторной системы). Содержит 10-12 % углеводов, молекулярная масса 500 кДа.

· IgD составляет менее одного процента фракции иммуноглобулинов плазмы, содержится в основном на мембране некоторых В-лимфоцитов. Функции до конца не выяснены, предположительно является антигенным рецептором с высоким содержанием связанных с белком углеводов для В-лимфоцитов, ещё не представлявшихся антигену. Молекулярная масса 175 кДа.

Классификация по антигенам

· так называемые «антитела-свидетели заболевания», наличие которых в организме сигнализирует о знакомстве иммунной системы с данным возбудителем в прошлом или о текущем инфицировании этим возбудителем, но которые не играют существенной роли в борьбе организма с возбудителем (не обезвреживают ни самого возбудителя, ни его токсины, а связываются со второстепенными белками возбудителя).

· аутоагрессивные антитела, или аутологичные антитела, аутоантитела - антитела, вызывающие разрушение или повреждение нормальных, здоровых тканей самого организмахозяина и запускающие механизм развития аутоиммунных заболеваний.

· аллореактивные антитела, или гомологичные антитела, аллоантитела - антитела против антигенов тканей или клеток других организмов того же биологического вида. Аллоантитела играют важную роль в процессах отторжения аллотрансплантантов, например, при пересадке почки, печени, костного мозга, и в реакциях на переливание несовместимой крови.

· гетерологичные антитела, или изоантитела - антитела против антигенов тканей или клеток организмов других биологических видов. Изоантитела являются причиной невозможности осуществления ксенотрансплантации даже между эволюционно близкими видами (например, невозможна пересадка печени шимпанзе человеку) или видами, имеющими близкие иммунологические и антигенные характеристики (невозможна пересадка органов свиньи человеку).

· антиидиотипические антитела - антитела против антител, вырабатываемых самим же организмом. Причём это антитела не «вообще» против молекулы данного антитела, а именно против рабочего, «распознающего» участка антитела, так называемого идиотипа. Антиидиотипические антитела играют важную роль в связывании и обезвреживании избытка антител, в иммунной регуляции выработки антител. Кроме того, антиидиотипическое «антитело против антитела» зеркально повторяет пространственную конфигурацию исходного антигена, против которого было выработано исходное антитело. И тем самым антиидиотипическое антитело служит для организма фактором иммунологической памяти, аналогом исходного антигена, который остаётся в организме и после уничтожения исходных антигенов. В свою очередь, против антиидиотипических антител могут вырабатыватьсяанти-антиидиотипические антитела и т. д.

· Моноклональные антитела - антитела, вырабатываемые иммунными клетками, принадлежащими к одному клеточному клону, то есть произошедшими из одной плазматической клетки-предшественницы. Моноклональные антитела могут быть выработаны против почти любого природного антигена (в основном белки и полисахариды), который антитело будет специфически связывать. Они могут быть далее использованы для детекции (обнаружения) этого вещества или его очистки.

· Гибридома - гибридная клетка, искусственно полученная на основе слияния продуцирующей антитела В-лимфоцита с раковой клеткой, придающей этой гибридной клетке способность неограниченного размножения при культивировании in vitro, которая осуществляет синтез специфических иммуноглобулинов одного изотипа - моноклональных антител.Гибридомы, продуцирующие моноклональные антитела, размножают или в аппаратах, приспособленных для выращивания культур клеток или же вводя их внутрибрюшинно особой линии (асцитным) мышам. В послед­нем случае моноклональные антитела накап­ливаются в асцитной жидкости, в которой размножаются гибридомы. Полученные как тем, так и другим способом моноклональные антитела подвергают очистке, стандартиза­ции и используют для создания на их основе диагностических препаратов. Гибридомные моноклональные антитела нашли широкое применение при создании диагностических и лечебных иммунобиоло­гических препаратов.

18. Антителообразование: первичный и вторичный иммунный ответ. Иммунологическая память.

Антителообразование - образование специфических иммуноглобулинов, индуцированное антигеном; происходит главным образом в зрелых плазматических клетках, а также в плазмобластах и лимфобластах.

Основная масса антител образуется в клетках плазмоцитарного ряда (плазмобласт, проплазмоцит, плазмоцит). Каждая из них продуцирует антитела только одной специфичности, т. е. к одной антигенной детерминанте.

Иммунный ответ - последовательно развертывающаяся многоуровневая реакция антител и иммунных органов на антиген, сопровождающаяся гемодинамическими сдвигами.

При первичном контакте организма с антигеном и антителообразовании различают индуктивную и продуктивные фазы. Продолжительность первой фазы составляет около 2 суток. В этот период происходит пролиферация и дифференцировка лимфоидных клеток, развитие плазмобластической реакции. Вслед за индуктивной наступает продуктивная фаза. В сыворотке крови антитела начинают определяться с З-го дня после контакта с антигеном. Эти антитела относятся к классу IgM. С 5–7 дня происходит постепенная смена синтеза IgM на синтез IgG той же специфичности. Обычно к 12-15 дню кривая антителообразования достигает максимума, далее уровень антител начинает снижаться, но определенное их количество можно обнаружить и через много месяцев, а иногда и лет. При повторном контакте организма с тем же антигеном индуктивная фаза занимает лишь несколько часов. Продуктивная фаза протекает быстрее и интенсивнее, осуществляется синтез преимущественно IgG.

Первичный иммунный ответ - наработка АТ и последующее связывание АГ с АТ- как реакция на первую встречу с новым АГ. Во внеутробной жизни человека непрерывно происходят реакции готовых антител с АГ - вторичный иммунный ответ. Характер иммунного ответа зависит от многих факторов: исходной активности иммунной системы, вида АГ, способа поступления в организм, количества и динамики поступления и т.д., состояния организма (возраста, образа жизни, питания, т.д.) и др.

Первичный иммунный ответ развивается после первого контакта с антигеном. Для него характерны следующие особенности.

– Наличие латентного периода (2-3 дня после первого контакта с антигеном). Это связано с отсутствием лимфоцитов памяти. Все клоны лимфоцитов находятся в фазе покоя G0. При поступлении в организм антигена вначале синтезируются IgM (антитела выявляются через 2-3 суток), а затем – IgG (пик приходится на 10-14 сутки, причем эти антитела могут сохранятся в низком титре в течение всей жизни). Отмечается также небольшое увеличение уровней IgA, IgE и IgD. Образуются комплексы антиген-антитело.

– Уже с третьих суток появляются иммунные Т-лимфоциты.

– Первичный иммунный ответ затихает через 2-3 недели после стимуляции антигеном.

– Появляются лимфоциты памяти и может долго поддерживаться следовой уровень IgG.

Б. Вторичный иммунный ответ развивается после повторного контакта с тем же антигеном и имеет следующие особенности.

– В организме уже имеются долгоживущие клоны антигенспецифических Т- и В-лимфоцитов памяти, ответственных за «память» об антигене и способных к рециркуляции, они находятся не в покое, а в фазе G1.

– Стимуляция синтеза антител и иммунных Т-лимфоцитов наступает через 1-3 дня.

– Т-клетки памяти быстро превращаются в эффекторные.

– Количество антител сразу резко увеличивается, причем синтезируются иммуноглобулины высокой специфичности – IgG.

– Чем больше контактов с антигенами имело место в данном организме, тем выше будет концентрация и специфичность антител.

Иммунологическая память. При повторной встрече с антигеном организм формирует более активную и быструю иммунную реакцию - вторичный иммунный ответ. Этот феномен получил название иммунологической памяти.

Иммунологическая память имеет высокую специфичность к конкретному антигену, распространяется как на гуморальное, так и клеточное звено иммунитета и обусловлена В- и Т-лимфоцитами. Она образуется практически всегда и сохраняется годами и даже десятилетиями. Благодаря ней наш организм надежно защищен от повторных антигенных интервенций.

Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и поддержания его длительное время на защитном уровне. Осуществляют это 2-3-кратными прививками при первичной вакцинации и периодическими повторными введениями вакцинного препарата - ревакцинациями.

Антитела (иммуноглобулины , ИГ, Ig) - это особый класс гликопротеинов, присутствующих на поверхности В-клеток в виде мембраносвязанных рецепторов и в сыворотке крови и тканевой жидкости в виде растворимых молекул. Они являются важнейшим фактором специфического гуморального иммунитета. Антитела используются иммунной системой для идентификации и нейтрализации чужеродных объектов - например, бактерий и вирусов. Антитела выполняют две функции: антиген -связывающую и эффекторную (вызывают тот или иной иммунный ответ, например, запускают классическую схему активации комплемента).

Антитела синтезируются плазматическими клетками, которыми становятся В-лимфоциты в ответ на присутствие антигенов. Для каждого антигена формируются соответствующие ему специализировавшиеся плазматические клетки, вырабатывающие специфичные для этого антигена антитела. Антитела распознают антигены, связываясь с определённым эпитопом - характерным фрагментом поверхности или линейной аминокислотной цепи антигена.

Антитела состоят из двух лёгких цепей и двух тяжелых цепей. У млекопитающих выделяют пять классов антител (иммуноглобулинов) - IgG, IgA, IgM, IgD, IgE, различающихся между собой по строению и аминокислотному составу тяжёлых цепей и по выполняемым эффекторным функциям.

История изучения

Самое первое антитело было обнаружено Берингом и Китазато в 1890 году , однако в это время о природе обнаруженного столбнячного антитоксина , кроме его специфичности и его присутствия в сыворотке иммунного животного, ничего определенного сказать было нельзя. Только с 1937 года - исследований Тизелиуса и Кабата, начинается изучение молекулярной природы антител. Авторы использовали метод электрофореза белков и продемонстрировали увеличение гамма-глобулиновой фракции сыворотки крови иммунизированных животных. Адсорбция сыворотки антигеном , который был взят для иммунизации, снижала количество белка в данной фракции до уровня интактных животных.

Строение антител

Общий план строения иммуноглобулинов: 1) Fab ; 2) Fc ; 3) тяжелая цепь; 4) легкая цепь; 5) антиген-связывающийся участок; 6) шарнирный участок

Антитела являются относительно крупными (~150 кДа - IgG) гликопротеинами , имеющими сложное строение. Состоят из двух идентичныхтяжелых цепей (H-цепи, в свою очередь состоящие из V H , C H1 , шарнира, C H2 и C H3 доменов) и из двух идентичных лёгких цепей (L-цепей, состоящих из V L и C L доменов). К тяжелым цепям ковалентно присоединены олигосахариды. При помощи протеазы папаина антитела можно расщепить на два Fab (англ. fragment antigen binding - антиген-связывающий фрагмент) и один Fc (англ. fragment crystallizable - фрагмент, способный к кристаллизации). В зависимости от класса и исполняемых функций антитела могут существовать как в мономерной форме (IgG, IgD, IgE, сывороточный IgA) так и в олигомерной форме (димер-секреторный IgA, пентамер - IgM). Всего различают пять типов тяжелых цепей (α-, γ-, δ-, ε-и μ- цепи) и два типа легких цепей (κ-цепь и λ-цепь).

Классификация по тяжелым цепям

Различают пять классов (изотипов ) иммуноглобулинов, различающихся:

    величиной

  • последовательностью аминокислот

Класс IgG классифицируют на четыре подкласса (IgG1, IgG2, IgG3, IgG4), класс IgA - на два подкласса (IgA1, IgA2). Все классы и подклассы составляют девять изотипов, которые присутствуют в норме у всех индивидов. Каждый изотип определяется последовательностью аминокислот константной области тяжелой цепи.

Функции антител

Иммуноглобулины всех изотипов бифункциональны. Это означает, что иммуноглобулин любого типа

    распознает и связывает антиген, а затем

    усиливает киллинг и/или удаление иммунных комплексов, сформированных в результате активации эффекторных механизмов.

Одна область молекулы антител (Fab) определяет ее антигенную специфичность, а другая (Fc) осуществляет эффекторные функции: связывание с рецепторами, которые экспрессированы на клетках организма (например, фагоцитах); связывание с первым компонентом (C1q) системы комплемента для инициации классического пути каскада комплемента.

    IgG является основным иммуноглобулином сыворотки здорового человека (составляет 70-75 % всей фракции иммуноглобулинов), наиболее активен во вторичном иммунном ответе и антитоксическом иммунитете. Благодаря малым размерам (коэффициент седиментации 7S, молекулярная масса 146 кДа) является единственной фракцией иммуноглобулинов, способной к транспорту через плацентарный барьер и тем самым обеспечивающей иммунитет плода и новорожденного. В составе IgG 2-3 % углеводов ; два антигенсвязывающих F ab -фрагмента и один F C -фрагмент. F ab -фрагмент (50-52 кДа) состоит из целой L-цепи и N-концевой половины H-цепи, соединённых между собой дисульфидной связью , тогда как F C -фрагмент (48 кДа) образован C-концевыми половинами H-цепей. Всего в молекуле IgG 12 доменов (участки, сформированные из β-структуры и α-спиралей полипептидных цепей Ig в виде неупорядоченных образований, связанных между собой дисульфидными мостиками аминокислотных остатков внутри каждой цепи): по 4 на тяжёлых и по 2 на лёгких цепях.

    IgM представляют собой пентамер основной четырехцепочечной единицы, содержащей две μ-цепи. При этом каждый пентамер содержит одну копию полипептида с J-цепью (20 кДа), который синтезируется антителообразующей клеткой и ковалентно связывается между двумя соседними F C -фрагментами иммуноглобулина. Появляются при первичном иммунном ответе B-лимфоцитами на неизвестный антиген, составляют до 10 % фракции иммуноглобулинов. Являются наиболее крупными иммуноглобулинами (970 кДа). Содержат 10-12 % углеводов. Образование IgM происходит ещё в пре-B-лимфоцитах, в которых первично синтезируются из μ-цепи; синтез лёгких цепей в пре-B-клетках обеспечивает их связывание с μ-цепями, в результате образуются функционально активные IgM, которые встраиваются в поверхностные структуры плазматической мембраны, выполняя роль антиген распознающего рецептора; с этого момента клетки пре-B-лимфоцитов становятся зрелыми и способны участвовать в иммунном ответе.

    IgA сывороточный IgA составляет 15-20 % всей фракции иммуноглобулинов, при этом 80 % молекул IgA представлено в мономерной форме у человека. Секреторный IgA представлен в димерной форме в комплексе секреторным компонентом , содержится в серозно-слизистых секретах (например в слюне , слезах, молозиве , молоке , отделяемом слизистой оболочки мочеполовой и респираторной системы). Содержит 10-12 % углеводов, молекулярная масса 500 кДа.

    IgD составляет менее одного процента фракции иммуноглобулинов плазмы, содержится в основном на мембране некоторых В-лимфоцитов. Функции до конца не выяснены, предположительно является антигенным рецептором с высоким содержанием связанных с белком углеводов для В-лимфоцитов, еще не представлявшихся антигену . Молекулярная масса 175 кДа.

Классификация по антигенам

    так называемые «антитела-свидетели заболевания» , наличие которых в организме сигнализирует о знакомстве иммунной системы с данным возбудителем в прошлом или о текущем инфицировании этим возбудителем, но которые не играют существенной роли в борьбе организма с возбудителем (не обезвреживают ни самого возбудителя, ни его токсины, а связываются со второстепенными белками возбудителя).

    аутоагрессивные антитела , или аутологичные антитела, аутоантитела - антитела, вызывающие разрушение или повреждение нормальных, здоровых тканей самого организма хозяина и запускающие механизм развития аутоиммунных заболеваний .

    аллореактивные антитела, или гомологичные антитела, аллоантитела - антитела против антигенов тканей или клеток других организмов того же биологического вида. Аллоантитела играют важную роль в процессах отторжения аллотрансплантантов, например, при пересадке почки , печени , костного мозга , и в реакциях на переливание несовместимой крови.

    гетерологичные антитела, или изоантитела - антитела против антигенов тканей или клеток организмов других биологических видов. Изоантитела являются причиной невозможности осуществления ксенотрансплантации даже между эволюционно близкими видами (например, невозможна пересадка печени шимпанзе человеку) или видами, имеющими близкие иммунологические и антигенные характеристики (невозможна пересадка органов свиньи человеку).

    антиидиотипические антитела - антитела против антител, вырабатываемых самим же организмом. Причём это антитела не «вообще» против молекулы данного антитела, а именно против рабочего, «распознающего» участка антитела, так называемого идиотипа. Антиидиотипические антитела играют важную роль в связывании и обезвреживании избытка антител, в иммунной регуляции выработки антител. Кроме того, антиидиотипическое «антитело против антитела» зеркально повторяет пространственную конфигурацию исходного антигена, против которого было выработано исходное антитело. И тем самым антиидиотипическое антитело служит для организма фактором иммунологической памяти, аналогом исходного антигена, который остаётся в организме и после уничтожения исходных антигенов. В свою очередь, против антиидиотипических антител могут вырабатываться анти-антиидиотипические антитела и т. д.

Специфичность антител

Имеет в виду то, что каждый лимфоцит синтезирует антитела только одной определенной специфичности. И эти антитела располагаются на поверхности этого лимфоцита в качестве рецепторов.

Как показывают опыты, все поверхностные иммуноглобулины клетки имеют одинаковый идиотип: когда растворимый антиген , похожий на полимеризованный флагеллин , связывается со специфической клеткой, то все иммуноглобулины клеточной поверхности связываются с данным антигеном и они имеют одинаковую специфичность то есть одинаковый идиотип.

Антиген связывается с рецепторами, затем избирательно активирует клетку с образованием большого количества антител. И так как клетка синтезирует антитела только одной специфичности, то эта специфичность должна совпадать со специфичностью начального поверхностного рецептора.

Специфичность взаимодействия антител с антигенами не абсолютна, они могут в разной степени перекрестно реагировать с другими антигенами. Антисыворотка , полученная к одному антигену, может реагировать с родственным антигеном, несущим одну или несколько одинаковых или похожих детерминант . Поэтому каждое антитело может реагировать не только с антигеном, который вызвал его образование, но и с другими, иногда совершенно неродственными молекулами. Специфичность антител определяется аминокислотной последовательностью их вариабельных областей.

Клонально-селекционная теория :

    Антитела и лимфоциты с нужной специфичностью уже существуют в организме до первого контакта с антигеном.

    Лимфоциты, которые участвуют в иммунном ответе, имеют антигенспецифические рецепторы на поверхности своей мембраны. У B-лимфоцитов рецепторы- молекулы той же специфичности, что и антитела, которые лимфоциты впоследствии продуцируют и секретируют.

    Любой лимфоцит несет на своей поверхности рецепторы только одной специфичности.

    Лимфоциты, имеющие антиген , проходят стадию пролиферации и формируют большой клон плазматических клеток. Плазматические клетки синтезируют антитела только той специфичности, на которую был запрограммирован лимфоцит-предшественник. Сигналами к пролиферации служат цитокины , которые выделяются другими клетками. Лимфоциты могут сами выделять цитокины.

Вариабельность антител

Антитела являются чрезвычайно вариабельными (в организме одного человека может существовать до 10 8 вариантов антител). Все разнообразие антител проистекает из вариабельности как тяжёлых цепей, так и лёгких цепей. У антител, вырабатываемых тем или иным организмом в ответ на те или иные антигены, выделяют:

    Изотипическая вариабельность - проявляется в наличии классов антител (изотипов), различающихся по строению тяжёлых цепей и олигомерностью, вырабатываемых всеми организмами данного вида;

    Аллотипическая вариабельность - проявляется на индивидуальном уровне в пределах данного вида в виде вариабельности аллелей иммуноглобулинов - является генетически детерминированным отличием данного организма от другого;

    Идиотипическая вариабельность - проявляется в различии аминокислотного состава антиген-связывающего участка. Это касается вариабельных и гипервариабельных доменов тяжёлой и лёгкой цепей, непосредственно контактирующих с антигеном.

Контроль пролиферации

Наиболее эффективный контролирующий механизм заключается в том, что продукт реакции одновременно служит ее ингибитором . Этот тип отрицательной обратной связи имеет место при образовании антител. Действие антител нельзя объяснить просто нейтрализацией антигена, потому что целые молекулы IgG подавляют синтез антител намного эффективнее, чем F(ab")2 -фрагменты. Предполагают, что блокада продуктивной фазы T-зависимого B-клеточного ответа возникает в результате образования перекрестных связей между антигеном, IgG и Fc - рецепторами на поверхности B-клеток. Инъекция IgM, усиливает иммунный ответ . Так как антитела именно этого изотипа появляются первыми после введения антигена, то на ранней стадии иммунного ответа им приписывается усиливающая роль.

Всего у человека 10 12 лимфоцитов или 10 6 клонов. Число же возможных антигенов - около 10". Это означает, что часть лимфоцитов «свободна» и готова к встрече с неизвестны­ми ещё антигенами.

Суть теории иммуногенеза, которая на сегодня является наиболее признанной, сводится к следующим положениям: ,

1. В эмбриональном периоде закладывается столько лимфоцитов (или даже больше),
сколько есть в среде антигенов. Каждый лимфоцит содержит антитела против предполагае­
мого антигена. Эти антитела продуцируются лимфоцитом в небольших количествах, и ло­
кализуются они на поверхности лимфоцита, выполняя роль рецептора антигена.

2. Когда в организме появляется антиген, то он взаимодействует только с одним видом
лимфоцитов, который соответствует ему по рецепторам-антителам. В результате начина­
ется пролиферация этого вида лимфоцитов (популяция), клонирование отдельных видов
лимфоцитов, наработка ими соответствующих количеств антител (отшнуровка рецепторов)
и последующая элиминация антигена либо путем связывания его, либо за счет цйтотоксиче-
ского повреждения клетки-антигена.

3. Лимфоциты, имеющие рецепторы к собственным (нечужеродным) антигенам и быв­
шие в контакте с этими антигенами в эмбриональном периоде, не способны к пролифера­
ции, так как это им запрещено соответствующими Т-супрессорами. Не исключено, что этот


запрет осуществляется за счет выработки Т-супрессорными клетками антител к собствен­ным антигенам, которые и блокируют рецепторы на обычных лимфоцитах.

Фазы иммунного ответа. Различают три фазы иммунного ответа: 1) афферентная фаза - распознавание антигена и активация иммунокомпетентных клеток;

2) центральная фаза -- вовлечение в процесс клеток-предшественниц, пролиферация,
дифференциация, в том числе в клетки памяти и клетки-эффекторы;

3) эффекторная фаза - разрушение, элиминация антигена из организма либо гумо­
ральным путем за счет реакции антитело + антиген, либо клеточным - цитотоксическая
реакция.

Антигены. Это одно из основных понятий в иммунологии. К антигенам относятся: бел­ки, полисахариды, липополисахариды, нуклеиновые кислоты как в очищенном виде, так и в виде структурных компонентов различных биологических структур (клеток, тканей, виру­сов). Обычно это молекулы с большой массой. На поверхности молекулы сложного антиге­на имеются функциональные группы, которые определяют особенность и специфичность данного вещества. Они получили название антигенных детерминант. Число детерминант на поверхности молекулы определяет валентность антигена.

Для иммунного ответа обычно нужно несколько молекул антигена, сконцентрирован­ных в виде обоймы. Такую концентрацию антигенов, циркулирующих в крови или находя­щихся в тканях, осуществляет Т-лимфоциты-хелперы и макрофаг. Макрофаг за счет нали­чия иммуноглобулиновых рецепторов захватывает антиген, 90% его переваривается, а 10% идет на поверхность макрофага - происходит процессинг, концентрация антигенных де­терминант. В результате такой работы слабый антиген повышает свою антигенность в 1000 раз, а сильный - увеличивает ее в 10 раз. Затем эта информация представляется Т-лимфоци-там-хелперам, которые в последующем передают ее на В-лимфоциты или на Т-киллеры.



Для представления антигена В-лимфоциту необходимо двойное распознавание, смысл которого сводится к следующему: В-лимфоцит узнает детерминанту антигена. Одновре­менно Т-хелпер с помощью своих рецепторов опознает макрофаг, который представляет антиген, и сам антиген, находящийся на макрофаге. Распознав «чужое», Т-хелпер продуци­рует интерлейкин-П, который вызывает превращение В-лимфоцита в плазматическую клет­ку - непосредственный производитель антител против узнанного антигена. Макрофаг в ответ на данное взаимодействие начинает продуцировать интерлейкин-1, который активи­рует наработку В-лимфоцитов из стволовой кроветворной клетки.

Такое взаимодействие макрофага, Т-хслперов и В-лимфоцитов получило название про­цесса кооперации. Ему уделяется большое внимание в иммунологии, так как нарушение этого процесса приводит к блокаде выработки антител.

Судьба антигенов. Существуют различные способы «нейтрализации», или элиминации антигена. В процессе эволюции были отобраны наиболее надежные и адекватные для каж­дого антигена способы. Можно выделить как минимум шесть таких способов.



1. Нейтрализция, или детоксикация антигена, за счет связывания его антителом.

2. Опсоиизация - связывание антигена антителом, образование единого комплекса,
который захватывается макрофагом и в последующем фагоцитируется им.

3. Контактный лизис, или цитотоксичность - этот способ ценен в отношении чужерод­
ных клеток.

4. Реакция связывания комплемента, или комплемент-зависимый цитолиз, когда клетка-
антиген уничтожается путем цитотоксического эффекта, но предварительно на клетку-ан­
тиген «садится» комплемент, облегчающий киллинг.

5. Воспалительная реакция: вокруг чужеродного антигена-клетки собираются фагоциты
и пожирают его.

6. Элиминация циркулирующих комплексов «антиген-антитело» через почки, кишеч­
ник, печень.

Рассмотрим более подробно функцию В-лимфоцитов и плазмоцитов, продуцирующих антитела. Как уже отмечалось выше, популяция В-лимфоцитов неоднородна с точки зрения


выполнения ими функций. Различают антител-продуценты, или плазматические клетки, киллеры, или цитотоксические клетки, супрессоры и клетки иммунологической памяти.

Все В-лимфоциты содержат на своей проверхности специфические рецепторы. Это ан­титела, которые с момента развития В-лимфоцита он продуцирует г- специфические имму­ноглобулины, узнающие только один антиген (один рецептор, или один иммуноглобулин - один антиген). В каждом лимфоците на его плазматической мембране таких однородных рецепторов примерно 10*--10 5 , благодаря чему один В-лимфоцит способен связывать до ISO тыс. молекул антигена. После узнавания начинается процесс пролиферации и диффе-ренцировки В-лимфоцитов и усиление продукции антител - тех же самых иммуноглобу­линов, которые выступали в роли рецепторов.

Кроме специфических рецепторов, каждый В-лимфоцит на своей поверхностной мемб­ране имеет и неспецифические рецепторы, в том числе для связывания комплемента, а точ­нее его С 3 -компонента, рецепторы для Фс-фрагментов любых иммуноглобулинов.

Антитела. Они выполняют в организме две основные функции. Первая - распознавание и специфическое связывание соответствующих антигенов, вторая - эффекторная: антите­ло индуцирует физиологические процессы, направленные на уничтожение антигена, - ли­зис чужеродных клеток через активацию системы комплемента, стимуляцию специализи­рованных иммунокомпетентных клеток, выделение физиологически активных веществ и т.п. По своей химической природе все антитела относятся к гликопротеидам. Белки, состав­ляющие основу антител, относятся к глобулинам. В составе антитела имеются константные области и вариабельные. Вариабельная область имеет абсолютную специфичность, благо­даря которой антитело способно узнать соответствующий антиген.

Все антитела можно разделись на пять больших классов - IgG, IgM, IgA, IgD, IgE.

Иммуноглобулины IgG содержатся в сыворотке, имеют два участка для связывания ан­тигена, преципитируют (осаждают) растворимые в воде антигены, вызывают агглютинацию (склеивание) корпускулярных антигенов, вызывают их лизис, но при условии, что на анти­гене будет комплемент. В силу особенностей строения IgG способны проходить через пла­центу. Благодаря этому плод во время беременности получает от матери антитела против ряда возбудителей инфекционных болезней.

Все остальные виды иммуноглобулинов не способны в норме проходить через плацен­тарный барьер..

Иммуноглобулины IgM содержатся в сыворотке и лимфе. Они способны преципитиро-вать, агглютинировать и лизировать антигены. Этот класс иммуноглобулинов обладает на­ибольшей способностью к связыванию комплемента.

Иммуноглобулины IgA обнаружены в сыворотке и слизистых оболочках. Они не могут преципитировать, агглютинировать и лизировать корпускулярные антигены. Под их влия­нием активируется комплемент, в результате чего происходит опсонизация бактерий, что облегчает их захват фагоцитами (нейтрофилами и макрофагами).

Иммуноглобулины IgD находятся в сыворотке, они не способны связывать комплемент. " Роль их до настоящего времени не ясна.

Иммуноглобулины IgE выявляются в сыворотке, не связывают комплемент, очевидно, участвуют в аллергических реакциях, так как при этих состояниях их концентрация в кро­ви существенно возрастает.

Динамика накопления антител. При первичной встрече антигена с В-лимфоцитами спус­тя несколько дней (около 10) происходит повышение уровня иммуноглобулинов IgM, кото­рые специфически связывают введенный антиген. В последующем синтез этого вида анти­тел снижается и на смену ему приходит синтез специфических антител, принадлежащих к иммуноглобулину IgG. После завершения инвазии данного микроба концентрация антител к нему снижается. При вторичном поступлении, например, через год, возникает, так назы­ваемый, вторичный ответ: буквально через сутки начинается быстрый синтез антител к это­му антигену, которые принадлежат к классу IgG. Такой быстрый и окончательный ответ обусловлен существованием клеток-памяти, которые сохраняли информацию о данном ан­тигене в течение всего этого года.


Механизм действия антител. Антитела распознают антиген и связываются с ним. Если антиген - это корпускулярная частица (клетка), то антитело совместно с комплементом образует отверстие в мембране клетки-мишени, в результате чего открывается доступ внутрь клетки ферментов сыворотки или лизосомальных ферментов, и это в конечном итоге при­водит к гибели клетки. Если антиген является растворимым, то под влиянием антитела он осаждается, становится нерастворимым. Для корпускулярных частиц существует еще один способ их элиминации - в результате присоединения антител антигены склеиваются меж­ду собой (агглютинируют) и выпадают в осадок.

Клеточный иммунитет. Физиология Т-лимфоцитов. Выше уже отмечалось, что популя­ция Т-лимфоцитов неоднородна; имеются клетки-киллеры, или убийцы; Т-хелперы, или по­мощники; Т-супрессоры, или ингибиторы иммунных реакций; Т-памяти.

Кроме такого деления выделяют антигенреактивные Т-лимфоциты. Они имеют рецепто­ры к антигену для его распознавания. При распознавании «своего» антигена Т-лимфоцит превращается в иммунобласт и начинает продуцировать медиатор, благодаря которому активируется ход последующих иммунных реакций, в том числе активация и размножение Т-хелперов. После окончания реакции бласт вновь превращается в малый лимфоцит-Механизмы Т-клеточного иммунитета разнообразны: отторжение трасплантата, реак­ция трансплантата против хозяина, реакция против некоторых бактерий, вирусов, грибов, реакция противоопухолевого иммунитета. В основе всех этих реакций лежит цитотоксиче-ский эффект Т-лимфоцитов, а точнее - Т-киллеров. После того, как Т-киллер получает информацию о наличии чужеродного антигена, он совершает цитотоксическое действие (цитолиз), например цитолиз клетки-трансплантата или клетки-опухоли. Цитолиз может проходить при непосредственном контакте Т-киллера с клеткой-мишенью, либо опосредо­ванно - через среду. В обоих случаях Т-лимфоцит совершает «укол» клетки: выпускает из своей цитоплазмы либо продукты активации кислорода (супероксидный ион), пероксид во­дорода, либо лимфотоксин, либо специфические гранулы. Все эти «стрелы» нарушают це­лостность мембраны клетки-мишени, что приводит к осмотическому шоку этой клетки и гибели. Такие удары по клеткам-мишеням один и тот же Т-киллер может совершать неодно­кратно. Существует еще один вариант цитотоксического действия Т-киллера: выделение лимфокинов, благодаря которым макрофаги повышают свою чувствительность к конкрет­ной клетке-мишени и фагоцитируют ее.

Все Т-лимфоциты содержат на своей поверхности специфические и неспецифические рецепторы. Специфические рецепторы - это особый вид иммуноглобулинов (IgT), кото­рые состоят только из тяжелых цепей. Они предназначены для связывания с антигенами. На одном Т-лимфоците примерно 100-200 таких рецепторов, благодаря чему один Т-лим­фоцит способен связать до 500-3000 молекул антигена. У хелперов, киллеров, супрессо-ров свои специфические рецепторы. Неспецифические рецепторы призваны связывать лю­бые иммуноглобулины, а также различные гуморальные факторы, активирующие или тор­мозящие ответ Т-лимфоцита на антиген.

Т-хелперы предназначены для активации В-лимфоцитов или Т-лимфоцитов. Механизм активации реализуется либо за счет прямого контакта Т-хелпера с активируемым лимфоци­том, либо опосредованно, за счет продукции так называемых хелперных факторов.

Т-супрессоры регулируют направление и объем иммунологической реакции путем огра­ничения пролиферации клонов лимфоцитов, путем угнетения образования антител В-лим-фоцитами, путем угнетения дифференцировки киллеров. Второй важный аспект деятельно­сти Т-супрессоров - это обеспечение иммунологической толерантности к определенным антигенам, в том числе к «своим» антигенам.

Иммунологический надзор. Постоянно в организме погибают, стареют и повреждаются различные клетки, в том числе - эритроциты, миоциты, нервные клетки. Непрерывно в организме образуются опухолевые клетки, т. е. клетки, утратившие контроль за развитием и стремящиеся к безудержному размножению. Все эти клетки становятся чужеродными в генетическом отношении. Поэтому необходим постоянный иммунный надзор за «домаш-


ним хозяйством». Механизм, обеспечивающий иммунный надзор, осуществляется за счет трех видов реакций, в основе которых лежит процесс узнавания «чужого», цитолиз и эли­минация. Все эти процессы возникают под влиянием специфических гуморальных факто­ров, выделяемых участниками этих реакций. Итак, три вида реакций.

1) СКЦ - спонтанная клеточная цитотоксичность. Это основная реакция. В ней участ­
вуют макрофаги, нейтрофилы и НК (натуральные киллеры).

2) АЗКЦ - антителозависимая клеточная цитотоксичность - реализуется с участием
К-клеток, Т-лимфоцитов, макрофагов, нейтрофилов и при наличии антител к данной чуже­
родной клетке.

3) АКЦ - активированная клеточная цитотокеичность - осуществляется Т-лимфоци-
тами, активированными и превращенными в киллеры под влиянием определенных факто­
ров - митогенов, интерферонов, интерлейкинов.

Как узнается «чужое» при иммунологическом надзоре? Вероятнее всего, за счет распоз­навания антигенных детерминант, которые появляются на клетках, требующих элиминации. Например, при старении эритроцита на его поверхности появляются новые антигенные де­терминанты, которые и служат сигналом для связывания этих эритроцитов и их удаления.

Торможение иммунного надзора. В нормальных условиях Т-супрессоры регулируют те­чение иммунологических реакций, подавляют излишнюю активность иммунокомпетентных клеток.

Однако при патологии возможно появление дополнительного количества супрессоров. Так, показано, что опухоли вырабатывают эндогенные супрессоры типаа-глобулина,а-фето-протеина, которые снижают или блокируют иммунный надзор. Ряд веществ также подавляет этот надзор, в частности, простагландины, альбумин, липопротеиды, кейлоны, С-реактивный белок, мочевина, цисгеин. Известно более 100 гуморальных регуляторов иммунного ответа, которые делят на две большие группы: факторы, активирующие функции иммунокомпетент­ных клеток (иммуноактиваторы) и факторы, подавляющие эти функции (супрессоры).

Иммунологическая толерантность - это иммунологическая ареактивность организма со стороны В- и Т-лимфоцитов по отношению к какому-либо антигену. Различают врожден­ную, или естественную, и приобретенную толерантность.

Врожденная толерантность приобретается в результате «знакомства» с антигеном во внутриутробном периоде. Поэтому не возникает ответ на собственные антигены. Анало­гичная ситуация - в раннем постнатальном периоде.

Приобретение толерантности возможно за счет иммунодепрессантов, облучения, вве­дения малых или, наоборот, больших доз антигена.

Антитела разных классов имеют об-щие черты строения (рис. 17. 18, 19).

Мономерная молекула иммуноглобулина имеет Y-образную форму и состо-ит из двух тяжелых и двух легких цепей, которые имеют разную длину и объе-динены дисульфидными связями. Цепи состоят из аминокислот определенной последовательности. Молекула иммуноглобулина G имеет два одинаковых Fab- фрагмента, каждый из которых состоит из целой легкой и части тяжелой цепи. Именно здесь содержится антигенсвязывающий сайт (участок). Хвостовая часть молекулы представлена одним Fc-фрагментом (константный участок), обра-зованным продолжением тяжелых цепей. С помощью константного участка иммуноглобулин связывается с рецептором к Fc-фрагменту мембран разных клеток (макрофагов, дендритных клеток). Конечные участки тяжелой и легкой цени Fab-фрагмента достаточно разнообразны (вариабельны) и являются спе-цифическими к определенному антигену . Отдельные зоны этих цепей отлича-ются гипервариабельностью (особенным разнообразием), Шарнирная зона, расположенная между двумя вариабельными и константным участком, позволяет свободно смещаться Fab-фрагментам относительно друг друга и относительно Fc-фрагмента, что имеет важное значение для эффективного взаимодействия антител с антигенными детерминантами возбудителей (позволяет пространст-венно «приспосабливаться» к антигену).

IgM и IgG синтезируются преимущественно в селезенке и регионарных лим-фоузлах внутренних органов, IgA в диффузных скоплениях лимфоидной ткани и солитарных фолликулах слизистых оболочек, a IgE — преимуществен-но в регионарных лимфоузлах, слизистых оболочках и коже .

Т-зависимый синтез антител

Для полноценной активации В-лимфоциты должны получить два сигнала — первый от специфического антигена при распознавании его имму-ноглобулиновым рецептором, а второй от Т-хелпер а путем антигенной презента-ции и взаимодействия молекул CD40 и CD40L Первый сигнал свидетельствует о наличии во внутренней среде клетки антигенной детерминанты, которую спо-собен распознать данный В-лимфоцит. Второй является своеобразным «разреше-нием» со стороны Т-хелпера на синтез специфических антител к ней. Описанные реакции являются основой Т-зависимого синтеза антител .

Антигенная стимуляция

Активация В-клеток происходит после взаимодействия их рецепторов ан-тигенного распознавания со специфическим антигеном, поступившим в орга-низм. Дело в том, что рецепторы антигенного распознавания этих клеток — не что иное, как те же антигенспецифические антитела, которые способен син-тезировать данный В-лимфоцит. Такие антитела не секретируются клетками в тканевую жидкость, а остаются фиксированными на внешней поверхности мембраны В лимфоцита и при связывании специфического антигена активи-руют В-клетку. Но этого стимула недостаточно для полноценной активации, поскольку формируется слабый по силе стимуляционный сигнал.

Антигенная презентация

Необходи-мо дополнительное взаимодействие с активированным антигенспецифическим Т-лимфоцит ом, именуемым хелпером, которое состоит в непосредственном контакте с Т-лимфоцитом и во влиянии синтезированных им иммунных ме-диаторов — цитокинов . Суть непосредственного контакта между двумя лимфоцитами состоит во взаимодействии комплекса иммуногенный пептид — моле-кула HLA II В-лимфоцита с антигенраспознающим рецептором Т-хелпера (т.е. в осуществлении антигенной презентации). Это ведущий механизм отбора на-иболее специфических к антигену В-клеток. Также при контакте лимфоцитов происходит взаимодействие молекулы CD40, которая активно экспрессируется на поверхности В-клетки после связывания специфического антигена, и CD40-лиганда (CD40L), появляющимся на мембране активированного Т-хелпера. Подобное взаимодействие создает костимулирующий сигнал, необходимый для полноценной активации иммунокомпетентных клеток. Важно отметить, что комплексирование CD40-CD40L также необходимо для переключения плазма-тических клеток на синтез иммуноглобулинов другого класса.

Т-независимый син-тез антител

В отдельных случаях, когда в организм поступает патоген, являющийся полимером и состоящий из многократно повторяющихся мономеров с анти-генными свойствами, возможна активация В-лимфоцита при непосредствен-ном взаимодействии с антигенами без участия Т-клеток (Т-независимый син-тез антител). В подобном случае взаимодействие многочисленных антигенов-мономеров патогена с иммуноглобулиновыми рецепторами В-лимфоцита на ограниченном мембранном участке создает достаточно сильный локальный стимуляционный сигнал для активации лимфоцита. Так как активационный сигнал достаточно сильный, необходимость в дополнительном взаимодействии с Т-хелпером отпадает. Следует отметить, что отсутствие Т-хелперной под-держки накладывает существенный отпечаток на качество иммунного ответа . Так, при Т-независимых иммунных реакциях синтезируются лишь иммуно-глобулины класса М и не формируется иммунная память.

Уровень иммуноглобулинов в плазме крови характеризует функциональное состояние В-звена иммунитета (табл. 3).

Таблица 3.Функциональное предназначение антител разных классов

Т созревания

Бактериолизины, цитолизины, ревматоидный фактор, изогемагглютинины, антитела против грамотрицательных бактерий, шигелл, палочек брюшного тифа. Активирует систему комплемента . Принимает участие в первичном иммунном ответе

До 1 года жизни

IgG- 75% (7-20 г/л) Выделяют 4 изотипа

Антитела против вирусов, нейротоксинов, грамположительных бакте-рий, возбудителей столбняка, малярии Активирует систему комплемента. Принимает участие во вторичном иммунном ответе и в образовании иммунных комплексов

До 2 лет жизни

(0,7-5 г/л) Выделяют 2 изотипа

Изогемагглютинины, антитела про-тив вирусов, бактерий. Местный иммунитет — сывороточный и сек-реторный иммуноглобулины.

До 12 лет жизни

(0,02-0,04 г/л)

Нормальные антитела очага альте-рации. Активируют макрофаги и эозинофилы , усиливают фагоцитоз и активность нейтрофилов

Функция практически не измена, обладают антивирусной активностью. Пребывают ь ткани миндалин, аденоидов. Не активируют систему комплемента

Существует 5 классов антител (иммуноглобулинов): IgG, IgM, IgA, lgE, IgD, которые отличаются по строению константных участков тяжелых цепей и функциональным свойствам.

Иммуноглобули-ны делятся на классы и подклассы (изоти-пы) в зависимости от строения константных участков тяжелых цепей. Отличия между указанными участками определяют особен-ности функциональных свойств каждого класса иммуноглобулинов.

IgG

IgG — мономер, состоящий из двух тяже-лых и двух легких цепей. Такие антитела являются бивалентными, поскольку содержат лишь два Fab-фрагмента. Класс IgG имеет 4 изотипа: (IgG 1 , IgG 2 , IgG 3 , IgG 4) (см. рис. 20), которые отличаются эффекторными функ-циями и специфичностью. Антитела к липополисахаридам относятся к субклассу IgG 2 , антирезусные антитела — к IgG 4 . Антитела субклассов IgG 1 и IgG 4 принимают участие в опсонизации. Для этого они специфически связываются посредством Fab- фрагментов с возбудителем, а посредством Fc-фрагмента — с соответствую-щими рецепторами фагоцитов, что способствует захвату патогена.

IgG составляет 70-75 % общего пула иммуноглобулинов плазмы крови, проходит через плацентарный барьер, эффективно активирует систему комплемента.

К иммуноглобулинам класса G относятся антитела против большинства ан-тигенов различной природы. В первую очередь с этими иммуноглобулинами связывают защиту от грамположительных бактерий, токсинов, вирусов (напри-мер, от вируса полиомиелита, где IgG принадлежит ведущая роль). Он считается иммуноглобулином вторичного иммунного ответа.

IgA

IgA может встречаться в форме мономеров, димеров и тримеров. Он имеет сы-вороточную (IgA 1 и А 2) и секреторную формы, существенно отличающиеся между собой.

Секреторный иммуноглобулин A

Секреторный иммуноглобулин A (sIgA) состоит из двух молекул сывороточного, объединенных в единую молекулу джоинг-цепью (от англ. to join — соединять) и содержащими секреторный (транспортный) компонент, который обеспечивает защиту от протеолитических ферментов (рис. 20). Секреторный компонент синтезируется эпителием слизистой оболочки, поэтому содержится только в антителах, которые находятся на слизистых. Таким образом, slgA пре-бывает в биологических жидкостях (молозиво, молоко, слюна , бронхиальный и желудочно-кишечный секрет, желчь , моча) и играет важную роль в форми-ровании местных механизмов резистентности. Он противодействует массиро-ванному поступлению антигенов через слизистые оболочки, препятствует при-креплению бактерий к слизистым, нейтрализует энтеротоксины, способствует фагоцитозу. В реакциях гиперчувствительности немедленного типа он действует в качестве блокирующего антитела. Этот иммуноглобулин не проникает через плаценту и не способен активировать систему комплемента. Материал с сайта

IgM

IgM — пентамер, состоящий из пяти молекул IgG, объединенных джоинг-цепью, поэтому он способен связать 10 молекул антигена (рис. 21). На долю IgM приходится около 10% общего количества иммуноглобулинов. К клас-су IgM относится основная масса антител против полисахаридных антигенов и антигенов грамотрицательных бактерий, а также ревматоидный фактор, гематтлютинины крови. Иммуноглобулины этого класса синтезируются в ответ на большинство антигенов на ранних стадиях иммунного ответа, то есть это антитела первичного иммунного ответа . В дальнейшем происходит переклю-чение на синтез IgG (или антител другого класса), которые являются более специфическими и лучше проникают в ткани (имеют меньший размер). IgM вместе с IgA принимает участие в местном иммунитете слизистых оболочек . IgM лучше других антител активирует систему комплемента. Он не проходит через плаценту, но синтезируется плодом .

IgE

IgE — мономер, содержащийся в незначительном количестве в сыворотке крови. Этот иммуноглобулин принимает участие в защите от гельминтов и в ал-лергических реакциях немедленного типа. Защита от гельминтов осуществляется путем связывания IgE через Fab-фрагмент с возбудителем (гельминтом), а через Fc-фрагмент — с рецептором на эозинофиле. Таким образом, происходит реакция антителозависимой клеточно-опосредованной цитотоксичности (АЗКОЦ), приво-дящая к гибели гельминта. IgE также принимает участие в атопических реакциях.

В последнее время изучается физиологическая роль IgE в защите слизистых. Если инфекционный агент преодолевает преграду образуемую IgA, то в роли следующей линии защиты выступают антитела, относящиеся к классу IgE. Они, связываясь с антигеном Fab-фрагментом, фиксируются Fc-фрагментом на мем-бранах тучных клеток и базофилов. что приводит к высвобождению биологи-чески активных веществ и развитию экссудативной реакции. IgE не проникает через плаценту и не активирует комплемент.

IgD

IgD — антитела с не установленной точно функцией. Известно лишь, что зрелость В-лимфоцитов определяется именно наличием мембранной формы этого иммуноглобулина. IgD не проникает через плаценту и не активирует ком-племент.

На этой странице материал по темам:

Иммуноглобулины синтезируются плазматическими клетками, которые образуются из трансформированных, стимулированных антигеном B-лимфоцитов (B-иммунобластов). Все молекулы иммуноглобулинов, синтезированных отдельной плазматической клеткой, идентичны и имеют специфическую реактивность против единственной антигенной детерминанты. Аналогично, все плазматические клетки, полученные путем трансформации и пролиферации одного B-лимфоцита-предшественника, идентичны; то есть, они составляют клон. Молекулы иммуноглобулинов, синтезированные клетками различных клонов плазматических клеток, имеют различные последовательности аминокислот, что обусловливает различную третичную структуру молекул и придает иную специфичность антителу, то есть, они реагируют с разными антигенами. Эти различия в последовательности аминокислот происходят в так называемом V (вариабельном, переменном) участке молекулы иммуноглобулина.

Регулирование производства антител: производство антител начинается после активации B-клеток антигеном. Максимальная концентрация антител в сыворотке наблюдается с 1 по 2 неделю и затем начинает снижаться. Непрерывное присутствие свободного антигена поддерживает ответ до тех пор, пока увеличение уровня антител не приведет к усиленному удалению антигена и, таким образом, прекращению стимуляции B-клеток. Существуют также более тонкие механизмы регуляции синтеза иммуноглобулинов. T-хелперы (CD4-позитивные) играют важную роль в регуляции ответа В-клеток на большое количество антигенов и их постоянное присутствие увеличивает производство антител. Этот эффект возникает благодаря высвобождению лимфокинов. T-супрессоры (CD8-позитивные) оказывают противоположное влияние, вызывая снижение иммунного ответа; сильное подавление ответа может быть одним из механизмов, лежащих в основе толерантности. Одним из дополнительных регулирующих механизмов является выработка анти-идиотипов (т.е. антител против собственных антител (аутоантител)). Предполагается, что при иммунном ответе производство специфического антитела обязательно сопровождается производством второго антитела (анти-идиотипного) со специфичностью против вариабельных (V) последовательностей (идиотипов или антиген-связывающих участков) первого антитела. Анти-идиотипное антитело способно к распознаванию идиотипов на антигенном рецепторе B-клеток (который построен из иммуноглобулина, идентичного по строению идиотипу первого антитела), таким образом, оно конкурирует с антигеном и служит для ингибирования активации B-клетки.

Следует отметить, что иммуноглобулины синтезируются не только при инфекционных заболеваниях. Они продуцируются непрерывно у каждого здорового человека. В результате в организме людей имеется определенный уровень различных видов антител, практически против всех микробных антигенов, в том числе и против тех возбудителей, с которыми они никогда не встречались. Это объясняется тем, что способность организма к синтезу антител выработалась у людей в процессе эволюционного развития и является генетически обусловленной. Эти антитела (иммуноглобулины) носят название нормальных. Нормальные антитела играют большую роль в защите организма от инфекции в момент внедрения возбудителей в организм, а также в начальный период болезни (т. е. тогда, когда иммунные реакции на инфекцию еще не успели сформироваться). Обычно первые проявления инфекционного иммунитета появляются не раньше 4-го дня с момента заболевания и достигают максимальной выраженности на 14 сутки и позже.

Заслуживает отдельного внимания тот факт, что продуцируемые подэпителиально расположенными лимфоцитами антитела секретируются не в кровь, а на поверхность слизистых оболочек. В то же время циркулирующие в крови антитела в норме не проникают на поверхность слизистых оболочек. Следовательно, лимфоидные клетки слизистых оболочек в значительной мере функционируют автономно. Секретируемые ими антитела образуют первую линию защиты организма от возбудителей инфекционных заболеваний.