Эндотоксины. Химическая структура эндотоксинов Эндотоксины бактерий

В одно из царств живой природы входят одноклеточные живые организмы, выделенные в отдел Бактерии. Большинство их видов вырабатывают особые химические соединения - экзотоксины и эндотоксины. Их классификация, свойства и влияние на организм человека будут изучены в данной статье.

Что такое токсины

Вещества (в основном белковой или липополисахаридной природы), выделяемые в межклеточную жидкость после ее гибели - это бактериальные эндотоксины. Если живой прокариотический организм продуцирует ядовитые вещества в клетку хозяина, то в микробиологии такие соединения называют экзотоксинами. Они оказывают разрушающее действие на ткани и органы человека, а именно: инактивируют ферментативный аппарат на клеточном уровне, нарушают обмен веществ. Эндотоксин - это яд, оказывающий поражающее действие на живые клетки, причем концентрация его может быть очень малой. В микробиологии известно около 60 соединений, выделяемых бактериальными клетками. Рассмотрим их более подробно.

Липополисахаридная природа бактериальных ядов

Учеными установлено, что эндотоксин - это продукт расщепления внешней мембраны Он представляет собой комплекс, состоящий из сложного углевода и липида, взаимодействующий с конкретным видом клеточных рецепторов. Такое соединение состоит из трех частей: липида А, молекулы олигосахарида и антигена. Именно первый компонент, попадая в кровоток, вызывает наибольший повреждающий эффект, сопровождаемый всеми признаками тяжелого отравления: диспептическими явлениями, гипертермией, поражениями центральной нервной системы. Заражение крови эндотоксинами происходит настолько стремительно, что в организме развивается септический шок.

Еще один структурный элемент, входящий в эндотоксин - это олигосахарид, содержащий гептозу - C 7 H 14 O 7 . Поступая в кровяное русло, центральный дисахарид также может вызывать интоксикацию организма, но в более легкой форме, чем случае попадания в кровь липида А.

Последствия влияния эндотоксинов на организм человека

Наиболее распространенными последствиями действия бактериальных ядов на клетки являются тромбогеморрагический синдром и септический шок. Первый вид патологии возникает вследствие поступления в кровь веществ - токсинов, снижающих ее свертываемость. Это приводит к многочисленным повреждениям органов, состоящих из соединительной ткани - паренхимы, таких, например, как легкие, печень, почки. В их паренхиме происходят множественные кровоизлияния, а в тяжелых случаях - кровотечения. Другой вид патологии, возникающий в результате действий бактериальных ядов - это септический шок. Он приводит к нарушениям крово- и лимфообращения, последствиями которого являются нарушения транспортировки кислорода и питательных веществ к жизненно важным органам и тканям: головному мозгу, легким, почкам, печени.

У человека резко нарастают угрожающие для жизни симптомы, такие как стремительное падение кровяного давления, гипертермия и быстроразвивающаяся острая сердечно-сосудистая недостаточность. Срочное медицинское вмешательство (проведение гормональной и антибиотикотерапии) купирует действие эндотоксина и быстро выводит его из организма.

Отличительные особенности экзотоксинов

Прежде чем выяснить специфику этого вида бактериальных ядов, напомним, что эндотоксин - это один из компонентов лизата клеточной стенки погибшей грамотрицательной бактерии. Экзотоксины синтезируются живыми как грамположительными, так и грамотрицательными. С точки зрения химического строения, они являются исключительно белками с небольшой молекулярной массой. Можно сказать, что основные клинические проявления, возникающие в процессе инфекционных болезней, вызваны именно поражающим действием экзотоксинов, которые образуются вследствие метаболизма самой бактерии.

Микробиологическими исследованиями доказана более высокая вида бактериальных ядов, по сравнению с эндотоксинами. Возбудители столбняка, коклюша, дифтерии вырабатывают ядовитые вещества белковой природы. Они обладают термолабильностью и разрушаются при нагревании в диапазоне от 70 до 95 градусов Цельсия в течение 12-25 минут.

Виды экзотоксинов

Классификация такого типа бактериальных ядов построена по принципу их влияния на структуры клетки. Например, различают мембранотоксины, они разрушают оболочку клетки хозяина или нарушают диффузию и ионов, проходящих через мембранный бислой. Также существуют цитотоксины. Это яды, действующие на гиалоплазму клетки и нарушающие реакции ассимиляции и диссимиляции, протекающие в клеточном метаболизме. Другие соединения - яды «работают», как ферменты, например, гиалуронидаза (нейроминидаза). Они подавляют работу иммунной системы человека, то есть инактивируют выработку В лимфоцитов, моноцитов и макрофагов в лимфатических узлах. Так протеазы разрушают защитные антитела, а лецитиназа расщепляет лецитин, входящий в состав нервных волокон. Это приводит к нарушению проведения биоимпульсов, и, как следствие, к снижению иннервации органов и тканей.

Цитотоксины могут действовать как детергенты, при этом происходит разрушение целостности липидного слоя мембраны клетки хозяина. Более того, они способны разрушать, как отдельные клетки организма, так и их ассоциаты - ткани, вызывая образование биогенных аминов, являющихся продуктами метаболических реакций и проявляющими токсические свойства.

Механизм действия бактериальных ядов

Микробиологическими исследованиями установлено, что эндотоксин - это комплексная структура, содержащая 2 молекулярных центра. Первый прикрепляет ядовитое вещество к специфическому рецептору клетки, а второй, расщепляя её мембрану, попадает непосредственно в гиалоплазму клетки. В ней токсин блокирует реакции обмена веществ: биосинтез белков, происходящий в рибосомах, синтез молекул АТФ, осуществляемый митохондриями, репликацию нуклеиновых кислот. Высокая вирулентность бактериальных пептидов, с точки зрения химического строения их молекул, объясняется тем, что некоторые локусы токсина маскируются под пространственную структуру веществ в клетке, таких как нейромедиаторов, гормонов и ферментов. Это позволяет токсину «обходить систему клеточной защиты» и стремительно проникать в её цитоплазму. Таким образом, клетка оказывается безоружной перед бактериальной инфекцией, так как теряет способность к образованию собственных защитных веществ: интерферона, гамма-глобулинов, антител. Нужно отметить, что свойства эндотоксинов и экзотоксинов схожи в том, что оба вида бактериальных ядов воздействуют на конкретные клетки организма, то есть обладают высокой специфичностью.

Эндотоксин (ЭТ) представляет собой липополисахарид (ЛПС), являющийся облигатным компонентом наружной мембраны всех грамотрицательных бактерий. Эндотоксин освобождается в просвет кишечника в результате самообновления клеточного пула сапрофитной микрофлоры и/или насильственного разрушения в результате антибактериальной терапии, пищевых отравлений, дисбактериозов, кишечных токсикоинфекций и др. Одна из моделей структуры ЭТ, а именно ЛПС Salmonella typhimurium, предложенная O. Westphal, представлена на схеме (рис.1) .

Субъединица ЛПС состоит из трех крупных частей: О-цепь, R-кор и липид А. Наружная часть ЛПС – О-цепь – построена из повторяющихся олигосахаридных звеньев, которые состоят из 3-4 сахаров. Эта часть ЛПС определяет специфичность О-антигена бактерий и значительно варьирует у разных видов грамотрицательных бактерий.

Средняя область – R-кор представляет собой олигосахарид, структура которого менее вариабельна, чем структура О-цепи. Наиболее постоянными составляющими R-кор являются сахара, примыкающие к липидной части ЛПС.

Липид А представляет собой консервативную химическую структуру и обуславливает общность биологических свойств ЛПС всех грамотрицательных бактерий. В естественных условиях синтеза эндотоксина липид А существует в комплексе с тремя молекулами кетодезоксиоктулоновой кислоты. Этот комплекс входит в состав биохимической структуры всех ЛПС. Изолированно он синтезируется в генетически дефектных штаммах грамотрицательных микроорганизмов, так называемых Re-мутантах, и носит название Re-гликолипида. Именно с этим ферментом ЛПС связан практически весь спектр биологической активности эндотоксина.

Рис.1. Схема строения ЛПС грамотрицательных бактерий

Эндотоксин обладает целым рядом биологических свойств. Перечень видов биологической активности эндотоксина:

- активация лейкоцитов и макрофагов;

- стимуляция продукции эндогенного пирогена, антагониста

глюкокортикоидов, интерферона, интерлейкинов,

туморнекротизирующего фактора (кахексина) и других медиаторов;

- активация синтеза белков острой фазы, в том числе амилоидного

белка;

- митогенный эффект;

- активация миелопоеза;

- поликлональная активация В-клеток;

- индукция развития провирусов;

- подавление тканевого дыхания;

- развитие гиперлипидемии;

- активация системы комплемента;

- активация тромбоцитов и факторов свертывания крови;

- гибель клеток;

- местный и генерализованный феномен Шварцмана;

- диссеминированное внутрисосудистое свертывание крови (ДВС);

- эндотоксиновый шок и развитие острой полиорганной

недостаточности .

Большой интерес исследователей к ЛПС обусловлен не только его уникальной структурой и широкой по разнообразию вызываемых эффектов биологической активностью, но и тем обстоятельством, что человек находится в постоянном контакте с ЭТ, так как в кишечнике обитает довольно большое количество Гр - бактерий. До недавнего времени считалось, что неповрежденная слизистая толстой кишки здорового человека является достаточно надежным барьером, предотвращающим попадание ЛПС в кровоток в больших количествах. В эксперименте чистый ЭТ через кишечный эпителий не проникал . В связи с этим, общепринятым являлось мнение о том, что ЛПС из кишечника в нормальных условиях в кровоток не проникает или проникает в незначительных количествах лишь в систему воротной вены, но не в системный кровоток. Однако в последние годы эта точка зрения существенно меняется. Исследования, проведенные под руководством М. Ю. Яковлева в лаборатории патологической анатомии экстремальных состояний Института морфологии человека АМН СССР, впервые установили факт присутствия кишечного ЛПС в общем кровотоке практически здоровых людей . Последующие исследования показали, что ЭТ проникает в общий кровоток новорожденного уже в первые часы жизни, и этот процесс синхронен с заселением кишечника младенца грамотрицательной микрофлорой . Более того, получены данные, свидетельствующие о том, что ЛПС может проникать в кровь плода уже внутриутробно .

Процесс проникновения ЭТ в кровоток усиливается при повреждениях слизистой кишечника, при дисбактериозах и различных воздействиях, которые сопровождаются транслокацией бактерий и продуктов их жизнедеятельности из кишечника в другие органы и ткани .

ЛПС может взаимодействовать практически со всеми клетками макроорганизма. На поверхности клеток млекопитающих имеются специфичные для ЭТ белковые рецепторы CD 14, CD 18, Toll-рецепторы и другие . Функции этих рецепторов различны. При связывании с рецепторным белком CD18 эндотоксин не вызывает активацию полиморфноядерных лейкоцитов (ПЯЛ). В то же время, при связывании с LBP-белком (lipopolysaccharid binding protein) плазмы крови ЛПС, в комплексе с этим белком, реагирует с рецептором CD14 на поверхности клетки, что приводит к активации лейкоцитов . Связывание эндотоксина c Toll-рецептором приводит к активации врожденного иммунитета.

В значительной мере биологическая активность ЛПС обусловлена его взаимодействием с лейкоцитами, макрофагами, эндотелиальными клетками и др. . Основным акцептирующим ЭТ клеточным элементом крови человека являются полиморфноядерные лейкоциты (ПЯЛ) . Известно несколько видов взаимодействия ЛПС с лейкоцитами. Взаимодействие гидрофобных структур ЛПС с мембранными компонентами клеток может зависеть от появления под действием ЭТ и содержания на поверхности нейтрофилов эндотелиально-лейкоцитарных адгезивных молекул (ELAM) . В частности к ELAM относят селектины. Е-селектин (ELAM-1) присутствует на плазматической мембране нейтрофилов и других фагоцитов. L-селектин (VCAM-1-сосудистая адгезивная молекула) находится на моноцитах и лимфоцитах и не обнаруживается на гранулярных лейкоцитах. Лигандом для адгезивной молекулы VCAM-1 являются медленно реагирующие антигены – VLA (a4, b4), которые также находятся на лимфоцитах и моноцитах. ПЯЛ на действие ЛПС отвечают освобождением цитокинов, интерлейкина-1b (IL-Ib) и фактора некроза опухоли (TNF-a), увеличением синтеза VCAM-1. VCAM-1 участвует в адгезии различных типов лимфоцитов, включая связывание B-клеток. Адгезию негранулярных лейкоцитов обеспечивают мембранные иммуноглобулины (ICAM-1, ICAM-2), связывающиеся с лимфоцитассоциированным антигеном- LFA-1. Подобно Е-селектину и VCAM-1, ICAM-1 вырабатывается на агранулоцитах только после их стимуляции IL-1 и TNF-a в ответ на воздействие ЭТ. В опытах на крысах Lewis было отмечено индуцированное повреждение эндотелия эндотоксином через экспрессию ICAM-1 при обработке IL-2, TNF-a и IFN-g. Усиление воздействия ICAM-1 заключается в адгезии лейкоцитов, среди которых преобладают моноциты (около 80%) и Т-лимфоциты (от 8% до 20%). Максимальная адгезия лейкоцитов отмечается к 6 часам с момента воздействия ЭТ и продолжается до 72 часов. Затем моноциты и лимфоциты активно проникают в сосудистую стенку через межклеточные каналы даже неповрежденных эндотелиальных клеток .

Следующей особенностью взаимодействия ЭТ с лейкоцитами является Fc-зависимое связывание ЛПС антителами, локализованными на Fc-рецепторах лейкоцитов . Этот вид взаимодействия приводит к фагоцитозу и инактивации ЭТ.

После введения кроликам ЭТ в дозе 0,25 мг ЛПС обнаруживается через 1-1,5 часа на 40% циркулирующих ПЯЛ. При этом они не разрушаются, как это было принято считать ранее, а перераспределяются в маргинальный пул микроциркуляторного русла.

ЭТ может быть обнаружен на поверхности гранулоцитов в крови практически здоровых взрослых людей, новорожденных и их матерей . Применение иммуноферментного анализа (ИФА) позволило показать, что в тонких мазках крови здоровых людей обнаруживается около 3-4% ПЯЛ, связавших ЛПС в кровотоке. Кроме того, еще около 5% ПЯЛ способны связывать ЭТ in vitro при обработке мазков препаратом ЛПС, т.е. у здоровых людей имеются резервы связывания эндотоксина гранулоцитами .


Библиографический список

  1. Westphal O. Bacterial Endotoxins // Int.Arch.Allergy Appl.Immunol. 1975. V.49.
  2. Лиходед В.Г., Ющук Н.Д., Яковлев М.Ю. Роль эндотоксина грамотрицательных бактерий в инфекционной и неинфекционной патологии // Архив патологии. 1996. №2.
  3. AU-Benoit R., Rowe S., Boyle P., Garret M. Alber S., Wiener J., Rowe M.I. Pure endfotoxin does not pass across the intestinal epithelium in vitro // Shock. 1998. V.10.
  4. Яковлев М.Ю. Роль кишечной микрофлоры и недостаточность барьерной функции печени в развитии эндотоксинемии и воспаления // Казан. мед. жур. 1988. №5.
  5. Яковлев М.Ю. Системная эндотоксинемия в физиологии и патологии человека. // Автореф. дисс. … д-ра мед. наук. М., 1993.
  6. Лиходед В.Г., Чхаидзе И.Г., Галдавадзе М.А. и др. Развитие кишечного дисбактериоза у новорожденных при дефиците антител к Re-гликолипиду // Микробиология. 1998. №4.
  7. Таболин В.А., Бельчик Ю.Ф., Чабаидзе Ж.Л. и др. Показатели антиэндотоксинового иммунитета у новорожденных в норме и патологии // Международн. журн. иммунореабил. 2000. № 1.
  8. Аниховская И.А., Опарина О.Н., Яковлева М.М., Яковлев М.Ю. Кишечный эндотоксин как универсальный фактор адаптации и патогенеза общего адаптационного синдрома // Физиология человека. 2006. Т.32. №2.
  9. Heumann D. CD14 and LPB in endotoxinemia and infections caused by Gram-negative bacteria // J. Endotox. Res. 2001. V. (6).
  10. Pugin J., Ulevitch R.J., Tobias P.S. A critical role for monocytes and CD14 in endotoxin-induced endothelial cell activation // J. Exp. Med. 1998. V.178.
  11. Amberger A., Maczek C., Jurgens G., Michaelis D. et al. Co-expression of ICAM-1, VCAM-1, ELAM-1 and Hsp60 in human arterial and venous endothelial cells in response to cytokines and oxidized low-density lipoproteins // Cell. Stress. Chaperones. 1997. V. 2(2).
  12. Seitz C.S., Kleindienst R., Xu Q., Wick G. Coexpression of heat-shock protein 60 and intercellular-adhesion molecule-1 is related to increased adhesion of monocytes and T cells to aortic endothelium of rats in response to endotoxin // Lab. Invest. 1996. V. 74(1).
  13. Лиходед В.Г., Аниховская И.В., Аполлонин А.В. и др. Fc-зависимое связывание эндотоксинов грамотрицательных бактерий полиморфноядерными лейкоцитами крови человека // Микробиология. 1996. №2.
Количество просмотров публикации: Please wait

Эндотоксины имеются только у грамотрицательных бактерий. Они представлены липополисахаридами и связанными с ними белками. Особенность эндотоксинов в том, что они термостабильны и высвобождаются из бактериальных клеток после их разрушения. Эндотоксины, в отличие от экзотоксинов, не обладают специфичностью действия. Их токсичность и пирогенность обусловлены липидом А, входящим в состав ЛПС и имеющим сходную структуру у разных грамотрицательных бактерий. Пирогенное действие эндотоксинов не связано с их непосредственным действием на терморегулирующие центры головного мозга. Они индуцируют выброс какого-то пирогенного вещества из полиморфно-ядерных лейкоцитов. Эндотоксины являются воспалитель­ными агентами; они увеличивают проницаемость капилляров и оказывают разруша­ющее действие на клетки. Их воспалительное и пирогенное действие неспецифично. Многообразие проявлений отравления эндотоксином обусловлено не только самим ЛПС, но и высвобождением многочисленных биологически активных соединений, синтез которых он индуцирует в организме человека и животных (гистамин, серотонин, простагландины, лейкотриены и др., всего более 20). Эти вещества и обусловливают нарушения в различных органах и тканях.

Все три компонента ЛПС - липид А, ядро полисахарида и его боковая цепочка из повторяющихся cахаров - обладают выраженными антигенными свойствами. ЛПС стимулирует синтез интерферонов, активизирует систему комплемента по классическому пути, оказывает митогенное действие на лимфоциты, а также аллер­генное действие. Его токсические свойства, в отличие от экзотоксинов, не снимают­ся при обработке формалином, и ЛПС не превращается в анатоксин.

Экзотоксины. Их продуцируют как грамположительные, так и грамотрицатель­ные бактерии. У грамположительных бактерий экзотоксины активно секретируются через ЦМ и клеточную стенку в окружающую среду с использованием специальных секретирующих систем. У грамотрицательных бактерий (холерный вибрион, токсигенные кишечные палочки, сальмонеллы) некоторые экзотоксины (энтеротоксины) синтезируются только при определенных условиях непосредственно в инфициро­ванном организме и нередко сохраняются в цитоплазме, освобождаясь из клетки только после ее разрушения.

Все известные бактериальные экзотоксины - белки, среди них есть термола­бильные и термостабильные. С белковой природой экзотоксинов связаны их основ­ные свойства: они обладают высокой силой действия (самые сильные токсины в природе - микробного происхождения), высокой избирательностью и связанной с ней специфичностью действия (картина столбняка у лабораторных животных оди­накова, как при заражении их возбудителем, так и его экзотоксином), которое они проявляют после некоторого латентного периода. Экзотоксины являются сильными антигенами, а некоторые - даже суперантигенами. Они индуцируют образование в организме антител, т. е. антитоксинов, которые нейтрализуют их действие. При обра­ботке формалином экзотоксины обезвреживаются и превращаются в анатоксины. Анатоксины лишены токсических свойств, но сохраняют свою способность индуциро­вать синтез антитоксинов, поэтому широко используются для создания искусственно­го иммунитета против дифтерии, столбняка, ботулизма и других заболеваний.

По своей химической структуре эндотоксины являются сложным комплексом, состоящим из нетоксичного белка и фосфолипидополисахарида, который выдерживает нагревание до 80-100° С. Эндотоксины менее ядовиты, чем экзотоксины, и не обладают специфическим действием на организм человека. Вне зависимости от того, какому из микробов принадлежит эндотоксин, действие его на организм сходно и проявляется картиной общего отравления.

Отравление организма больных эндотоксинами имеет место при большинстве инфекционных заболеваний.

При этом происходит поражение сосудистой системы со спазмом мелких сосудов и образованием в них тромбов. Развивается кислородное голодание тканей. Наблюдается нарушение функций центральной нервной системы, сердца, почек и ряда других жизненно важных органов. Эндотоксины вызывают также лихорадочную реакцию, местные воспалительные изменения и снижение количества лейкоцитов.

Крайне тяжелая степень отравления организма эндотоксинами известна в клинике под названием эндотоксического шока.

Такое состояние возникает в тех случаях, когда происходит быстрый распад в организме большого количества микробов и при этом освобождается сразу огромное количество эндотоксина. Разрушение микробов наступает или под воздействием защитных факторов организма или при лечебном применении таких препаратов, которые обладают; микробоцидным (т. е. убивающим микробы) действием, как, например, пенициллин или стрептомицин.

Циркуляция эндотоксина в общем кровотоке не приводит к образованию в организме скольконибудь значительных количеств антиэндотоксических антител, поэтому антиэндотоксический иммунитет является очень слабым.

Не удается получить достаточно эффективную антиэндотоксическую сыворотку и путем многократной иммунизации животных, так как эндотоксины являются плохими антигенами и отличаются к тому же антигенной разнородностью.

Поскольку и получить, и подобрать нужную лечебную сыворотку практически очень трудно, антиэндотоксические сыворотки не нашли широкого применения при лечении больных. При иммунизации животных бактериями вырабатываются антитела не против эндотоксинов, а против самих микробов, т. е. иммунитет имеет антимикробную направленность.

« Карантинные инфекции», Б.А. Мокров

Токсические вещества, синтезируемые бактериями, по химической природе относятся к белкам (экзотоксины) и ЛПС (эндотоксины) – локализуются в стенке Б!! и освобождаются только после их разрушения.

Эндотоксины. К ним относятся липополисахариды (ЛПС), которые содержатся в клеточной стенке грамотрицательных бак­терий. Токсические свойства определяются всей молекулой ЛПС , а не отдельными ее частями: ПС или липидом А. Хорошо изучены эндотоксины энтеробактерий (эшерихии, шигеллы и сальмонеллы, бруцеллы, туляремийные бактерии).

ЛПС (эндотоксины) в отличие от экзотоксинов более устойчивы к повышенной t°С, менее ядовиты и малоспецифичны. При введении в  подопытных Ж!! вызывают примерно одинаковую реакцию, независимую от того, из каких гр– Б!! они выделены. При ВВЕДЕНИИ БОЛЬШИХ ДОЗ наблюдается угнетение фагоцитоза, явления токсикоза, слабость, одышка, расстройством кишечника (диарея), падением деятель­ности и ↓ t°С тела. При введении НЕБОЛЬШИХ ДОЗ – обратный эффект: стимуляция фагоцитоза, t°С тела.

У ЛЮДЕЙ поступление эндотоксинов в кровяное русло приво­дит к лихорадке в результате их действия на клетки крови (гранулоциты, моноциты), из которых выделяются эндогенные пирогены. Возникает ранняя лейкопения , которая сменяется вторичным лейкоцитозом . Усиливается гликолиз  может возникнуть гипо­гликемия. Также развивается гипотония (по­ступление в кровь количества серотонина и кининов), нарушается кровоснабжение органов и ацидоз.

ЛПС активирует фракцию С3 комплемента по АЛЬТЕРНАТИВНОМУ ПУТИ  ↓ его содержания в сыворотке и накопление биологически активных фракций (С3а, С3b, С5а и др.). Большие количества поступившего в кровь эндоток­сина приводят к ТОКСИКО-СЕПТИЧЕСКОМУ ШОКУ.

ЛПС – сравнительно слабый иммуноген. Сыворотка крови животных, иммунизированных чистым эндотоксином, не облада­ет высокой антитоксической активностью  не способна полно­стью нейтрализовать его ядовитые свойства.

Некоторые бактерии одновременно образуют как белковые токсины, так и эндотоксины, например кишечная палочка и др.

    ферменты и антигены патогенности

Ферменты патогенности - это факторы агрессии и защиты микроорганизмов. Способность к образованию экзоферментов во многом определяет инвазивность бактерий- возможность проникать через слизистые, соединительнотканные и другие барьеры. К ним относятся различные литические ферменты- гиалуронидаза, коллагеназа, лецитиназа, нейраминидаза, коагулаза, протеазы. Более подробно их характеристика дана в лекции по физиологии микроорганизмов.

Важнейшими факторами патогенности считают токсины , которые можно разделить на две большие группы- экзотоксины и эндотоксины .

Экзотоксины продуцируются во внешнюю среду (организм хозяина), обычно белковой природы, могут проявлять ферментативную активность, могут секретировать как грамположительными, так и грамотрицательными бактериями. Они обладают очень высокой токсичностью, термически нестойки, часто проявляют антиметаболитные свойства. Экзотоксины проявляют высокую иммуногенность и вызывают образование специфических нейтрализующих антител- антитоксинов. По механизму действия и точке приложения экзотоксины отличаются- цитотоксины (энтеротоксины и дерматонекротоксины), мембранотоксины (гемолизины, лейкоцидины), функциональные блокаторы (холероген), эксфолианты и эритрогенины. Микробы, способные продуцировать экзотоксины, называют токсигенными.

Эндотоксины высвобождаются только при гибели бактерий, характерны для грамотрицательных бактерий, представляют собой сложные химические соединения клеточной стенки (ЛПС)- подробнее смотри лекцию по химическому составу бактерий. Токсичность определяется липидом А, токсин относительно термостоек; иммуногенные и токсические свойства выражены более слабо, чем у экзотоксинов.

Наличие капсул у бактерий затрудняет начальные этапы защитных реакций- распознавание и поглощение (фагоцитоз). Существенным фактором инвазивности является подвижность бактерий, обусловливающая проникновение микробов в клетки и в межклеточные пространства.

Факторы патогенности контролируются:

- генами хромосомы;

- генами плазмид;

- генами, привнесенными умеренными фагами.

    Биологический микроскоп.

Размеры микробов, имеющих клеточное строение, составляют 0,2–20 мкм и они легко обнаруживаются в иммерсионном микроскопе. Вирусы во много раз меньше. Диаметр самых больших из них, например вируса натуральной оспы, около 300 нм, а у самых мелких составляет 20–30 нм. Ввиду этого для выявления вирусов используются электронные микроскопы.

В микробиологических исследованиях применяют световые и элек­тронные микроскопы; методы оптической и электронной микроскопии.

Оптический микроскоп. Наиболее важной оптической частью микро­скопа являются объективы, которые делятся на сухие и иммерсионные.

Сухие объективы с относительно большим фокусным расстоянием и слабым увеличением применяются для изучения микроорганизмов, име­ющих крупные размеры (более 10–20 мкм), иммерсионные (лат. immersio – погружение) с фокусным расстоянием – при иссле­довании более мелких микробов.

При микроскопии иммерсионным объективом х90 обязательным ус­ловием является его погружение в кедровое, персиковое или в вазелиновое масло, показатели преломления света у которых близки предметному стеклу, на котором делают препараты. В этом случае падающий на препарат пучок света не рассеивается и, не меняя направления, попадает в иммерсионный объектив. Разре­шающая способность иммерсионного микроскопа находится в пределах 0,2 мкм, а максимальное увеличение объекта достигает 1350.

При использовании иммерсионного объектива вначале центрируют оптическую часть микроскопа. Затем поднимают конденсор до уровня предметного столика, открывают диафрагму, устанавливают объектив малого увеличения и при помощи плоского зеркала освеща­ют поле зрения. На предметное стекло с окрашенным препаратом наносят кап­лю масла, в которую под контролем гла­за осторожно погружают объектив, за­тем, поднимая тубус, смотрят в окуляр и вначале макро–, а потом микровинтом устанавливают четкое изображение объ­екта. По окончании работы удаляют салфеткой масло с фронтальной линзы объектива.

Микроскопия в темном поле зрения проводится при боковом освещении и обычно применяется при изучении подвижности бактерий или обнаружении патогенных спирохет, поперечник которых может быть меньше 0,2 мкм. Чтобы по­лучить яркое боковое освещение, обыч­ный конденсор заменяют специальным параболоидом–конденсором, в ко­тором центральная часть нижней линзы затемнена, а боковая поверхность зеркальная. Этот конденсор задерживает центральную часть параллель­ного пучка лучей, образуя темное поле зрения. Краевые лучи проходят через кольцевую щель, попадают на боковую зеркальную поверхность конденсора, отражаются от нее и концентрируются в его фокусе. Если на пути луча нет каких–либо частиц, он преломляется, падая на боковую зеркальную поверхность, отражается от нее и выходит из конденсора. Когда луч встречает на своем пути микробы, свет отражается от них и попадает в объектив – клетки ярко светятся. Так как для бокового освещения необходим параллельный пучок света, применяется только плоское зер­кало микроскопа. Обычно исследование в темном поле зрения проводится под сухой системой. При этом небольшую каплю материала поме­щают на предметное стекло и накрывают покровным, не допуская обра­зования пузырьков воздуха.

Фазово–контрастная и аноптральная микроскопия основаны на том, что оптическая длина пути света в любом веществе зависит от показателя преломления. Это свойство используют с целью увеличить контрастность изображения прозрачных объектов, какими являются микробы, т. е. для изучения деталей их внутреннего строения. Световые волны, проходя через оптически более плотные участки объекта, отстают по фазе от световых волн, не проходящих через них. При этом интенсивность света не меняется, а только изменяется фаза колебания, не улавливаемая глазом и фотопластинкой. Для повышения контрастности изображения фазовые колебания при помощи специальной оптической системы превращаются в амплитудные, хорошо улавливаемые глазом. Препараты в световом поле зрения становятся более контрастными – положительный контраст; при отрицательном фазовом контрасте на темном фоне виден светлый объект. Вокруг изображений нередко возникает ореол.

Большей четкости изображения малоконтрастных живых микробов (даже некоторых вирусов) достигают в аноптральном микроскопе. Одной из важнейших его деталей является линза объектива, расположенная вблизи «выходного» зрачка, на которую нанесен слой копоти или меди, поглощающий не менее 10 % света. Благодаря этому фон поля зрения приобретает коричневый цвет, микроскопируемые объекты имеют раз­личные оттенки – от белого до золотисто–коричневого.