Строение и классификация костей. Строение и химический состав костей Как называется органические вещества высушенной кости

Костная ткань - разновидность соединительной ткани, из которой построены кости - органы, составляющие костный скелет тела человека. Костная ткань состоит из взаимодействующих структур: клеток кости, межклеточного органического матрикса кости (органического скелета кости) и основного минерализованного межклеточного вещества. Клетки занимают всего лишь ≈1-5% общего объёма костной ткани скелета взрослого человека. Различают четыре типа клеток костной ткани.

Остеобласты - ростковые клетки, выполняющие функцию создания кости. Они расположены в зонах костеобразования на внешних и внутренних поверхностях кости.

Остеокласты - клетки, выполняющие функцию рассасывания, разрушения кости. Совместная функция остеобластов и остеокластов лежит в основе непрерывного управляемого процесса разрушения и воссоздания кости. Этот процесс перестройки костной ткани лежит в основе адаптации организма к многообразным физическим нагрузкам за счет выбора наилучших сочетаний жесткости, упругости и эластичности костей и скелета.

Остеоциты - клетки, происходящие из остеобластов. Они полностью замурованы в межклеточном веществе и контактируют отростками друг с другом. Остеоциты обеспечивают метаболизм (белков, углеводов, жиров, воды, минеральных веществ) костной ткани. Недифференцированные мезенхимальные клетки кости (остеогенные клетки, контурные клетки). Они находятся главным образом на наружной поверхности кости (у надкостницы) и на поверхностях внутренних пространств кости. Из них образуются новые остеобласты и остеокласты.

Межклеточное вещество представлено органическим межклеточным матриксом, построенным из коллагеновых (оссеиновых) волокон (≈90-95%) и основным минерализованным веществом (≈5-10%).

Коллаген внеклеточного матрикса костной ткани отличается от коллагена других тканей большим содержанием специфических поли полипептидов. Коллагеновые волокна в основном расположены параллельно направлению уровня наиболее вероятных механических нагрузок на кость и обеспечивают упругость и эластичность кости.

Основное вещество (the ground substance) состоит главным образом из экстрацеллюлярной жидкости, гликопротеидов и протеогликанов (хондроитинсульфаты, гиалуроновая кислота). Функция этих веществ пока не вполне ясна, но несомненно то, что они участвуют в управлении минерализацией основного вещества - перемещением минеральных компонентов кости.

Минеральные вещества , размещенные в составе основного вещества в органическом матриксе кости представлены кристаллами, построенными главным образом из кальция и фосфора (гидроксиапатит Ca10(PO4)6(OH)2). Отношение кальций/фосфор в норме составляет ≈1,3-2,0. Кроме того, в кости обнаружены ионы магния, натрия, калия, сульфата, карбоната, гидроксильные и другие ионы, которые могут принимать участие в образовании кристаллов. Каждое коллагеновое волокно компактной кости построено из периодически повторяющихся сегментов. Длина сегмента волокна составляет ≈64 нм (64.10-10 м). К каждому сегменту волокна примыкают кристаллы гидроксиапатита, плотно его опоясывая.

Помимо того, сегменты примыкающих коллагеновых волокон перекрывают друг друга. Соответственно, как кирпичи при кладке стены, перекрывают друг друга и кристаллы гидроксиапатита. Такое тесное прилегание коллагеновых волокон и кристаллов гидроксиапатита, а также их перекрытия, предотвращают «разрушение сдвига» кости при механических нагрузках. Коллагеновые волокна обеспечивают эластичность, упругость кости, ее сопротивление растяжению, в то время как кристаллы обеспечивают её прочность, жесткость, ее сопротивление сжатию. Минерализация кости связана с особенностями гликопротеидов костной ткани и с активностью остеобластов. Различают грубоволокнистую и пластинчатую костную ткань. В грубоволокнистой костной ткани (преобладает у зародышей; у взрослых организмов наблюдается только в области черепных швов и местах прикрепления сухожилий) волокна идут неупорядоченно. В пластинчатой костной ткани (кости взрослых организмов) волокна, сгруппированные в отдельные пластины, строго ориентированы и образуют структурные единицы, называемые остеонами.

К сведению в организме:

  1. От 208 до 214 индивидуальных костей.
  2. Нативная кость состоит из 50% неорганического материала, 25% органических веществ и 25% воды, связанной с коллагеном и протеогликанами.
  3. 90% органики составляет коллаген типа 1 и только 10% другие органические молекулы (гликопротеин остеокальцин, остеонектин, остеопонтин, костный сиалопротеин и другие пртеогликаны).
  4. Костные компоненты представлены: органическим матриксом - 20-40%, неорганическими минералами - 50-70%, клеточными элементами 5-10% и жирами - 3%.
  5. Макроскопически скелет состоит из двух компонентов - компактная или кортикальная кость; и сетчатая или губчатая кость.
  6. В среднем вес скелета составляет 5 кг (вес сильно зависит от возраста, пола, строения тела и роста).
  7. Во взрослом организме на долю кортикальной кости приходится 4 кг, т.е. 80% (в скелетной системе), тогда как губчатая кость составляет 20% и весит в среднем 1 кг.
  8. Весь объем скелетной массы у взрослого человека составляет примерно 0.0014 м³ (1400000 мм³) или 1400 см³ (1.4 литра).
  9. Поверхность кости представлена периостальной и эндостальной поверхностями - суммарно порядка 11,5 м² (11500000 мм²).
  10. Периостальная поверхность покрывает весь внешний периметр кости и составляет 4.4% грубо 0,5 м² (500000 мм²) всей поверхности кости.
  11. Внутренняя (эндостальная) поверхность состоит из трех составляющих
    1. внутрикортикальная поверхность (поверхность Гаверсовых каналов), которая составляет 30.4% или грубо 3,5 м² (3500000 мм²);
    2. поверхность внутренней стороны кортикальной кости порядка 4.4% или грубо 0,5 м² (500000 мм²) и
    3. поверхность трабекулярного компонента губчатой кости 60.8% или грубо 7 м² (7000000 мм²).
  12. Губчатая кость 1 гр. в среднем имеет поверхность 70 см² (70000 см²: 1000 гр.), тогда как кортикальная кость 1 гр. имеет порядка 11.25 см² [(0.5+3.5+0.5) х 10000 см²: 4000 гр.], т.е. в 6 раз меньше. По мнению других авторов это соотношение может составлять 10 к 1.
  13. Обычно при нормальном обмене веществ 0.6% кортикальной и 1.2% губчатой костной поверхности подвергается разрушению (резорбции) и, соответственно, 3% кортикальной и 6% губчатой костной поверхности вовлечены в формирование новой костной ткани. Остальная костная ткань (более 93% её поверхности) находится в состоянии отдыха или покоя.

Кость, os, ossis, как орган живого организма состоит из нескольких тканей, главнейшей из которых является костная.

Химический состав кости и ее физические свойства.

Костное вещество состоит из двоякого рода химических веществ: органических (1/3), главным образом оссеина, и неорганических (2/3), главным образом солей кальция, особенно фосфорнокислой извести (более половины - 51,04 %). Если кость подвергнуть действию раствора кислот (соляной, азотной и др.), то соли извести растворяются (decalcinatio), а органическое вещество остается и сохраняет форму кости, будучи, однако, мягким и эластичным. Если же кость подвергнуть обжиганию, то органическое вещество сгорает, а неорганическое остается, также сохраняя форму кости и ее твердость, но будучи при этом весьма хрупким. Следовательно, эластичность кости зависит от оссеина, а твердость ее - от минеральных солей. Сочетание неорганических и органических веществ в живой кости и придает ей необычайные крепость и упругость. В этом убеждают и возрастные изменения кости. У маленьких детей, у которых оссеина сравнительно больше, кости отличаются большой гибкостью и потому редко ломаются. Наоборот, в старости, когда соотношение органических и неорганических веществ изменяется в пользу последних, кости становятся менее эластичными и более хрупкими, вследствие чего переломы костей чаще всего наблюдаются у стариков.

Строение кости

Структурной единицей кости, видимой в лупу или при малом увеличении микроскопа, является остеон, т. е. система костных пластинок, концентрически расположенных вокруг центрального канала, содержащего сосуды и нервы.

Остеоны не прилегают друг к другу вплотную, а промежутки между ними заполнены интерстициальными костными пластинками. Остеоны располагаются не беспорядочно, а соответственно функциональной нагрузке на кость: в трубчатых костях параллельно длиннику кости, в губчатых - перпендикулярно вертикальной оси, в плоских костях черепа - параллельно поверхности кости и радиально.

Вместе с интерстициальными пластинками остеоны образуют основной средний слой костного вещества, покрытый изнутри (со стороны эндоста) внутренним слоем костных пластинок, а снаружи (со стороны периоста) - наружным слоем окружающих пластинок. Последний пронизан кровеносными сосудами, идущими из надкостницы в костное вещество в особых прободающих каналах. Начало этих каналов видно на мацерирован-ной кости в виде многочисленных питательных отверстий (foramina nutricia). Проходящие в каналах кровеносные сосуды обеспечивают обмен веществ в кости. Из остеонов состоят более крупные элементы кости, видимые уже невооруженным глазом на распиле или на рентгенограмме, - перекладины костного вещества, или трабекулы. Из этих трабекул складывается двоякого рода костное вещество: если трабекулы лежат плотно, то получается плотное компактное вещество, substantia compacta. Если трабекулы лежат рыхло, образуя между собою костные ячейки наподобие губки, то получается губчатое, трабекулярное вещество, substantia spongiosa, trabecularis (spongia, греч. - губка).

Распределение компактного и губчатого вещества зависит от функциональных условий кости. Компактное вещество находится в тех костях и в тех частях их, которые выполняют преимущественно функцию опоры (стойки) и движения (рычаги), например в диафизах трубчатых костей.

В местах, где при большом объеме требуется сохранить легкость и вместе с тем прочность, образуется губчатое вещество, например в эпифизах трубчатых костей.

Перекладины губчатого вещества располагаются не беспорядочно, а закономерно, также соответственно функциональным условиям, в которых находится данная кость или ее часть. Поскольку кости испытывают двойное действие - давление и тягу мышц, постольку костные перекладины располагаются по линиям сил сжатия и растяжения. Соответственно разному направлению этих сил различные кости или даже части их имеют разное строение. В покровных костях свода черепа, выполняющих преимущественно функцию защиты, губчатое вещество имеет особый характер, отличающий его от остальных костей, несущих все 3 функции скелета. Это губчатое вещество называется диплоэ, diploe (двойной), так как оно состоит из неправильной формы костных ячеек, расположенных между двумя костными пластинками - наружной, lamina externa, и внутренней, lamina interna. Последнюю называют также стекловидной, lamina vftrea, так как она ломается при повреждениях черепа легче, чем наружная.

Костные ячейки содержат костный мозг - орган кроветворения и биологической защиты организма. Он участвует также в питании, развитии и росте кости. В трубчатых костях костный мозг находится также в канале этих костей, называемом поэтому костномозговой полостью, cavitas medullaris.

Таким образом, все внутренние пространства кости заполняются костным мозгом, составляющим неотъемлемую часть кости как органа.


Костный мозг бывает двух родов: красный и желтый.

Красный костный мозг, medulla ossium rubra (детали строения см. в курсе гистологии), имеет вид нежной красной массы, состоящей из ретикулярной ткани, в петлях которой находятся клеточные элементы, имеющие непосредственное отношение к кроветворению (стволовые клетки) и костеобразованию (костесозидатели - остеобласты и костеразруши-тели - остеокласты). Он пронизан нервами и кровеносными сосудами, питающими, кроме костного мозга, внутренние слои кости. Кровеносные сосуды и кровяные элементы и придают костному мозгу красный цвет.

Желтый костный мозг, medulla ossium flava, обязан своим цветом жировым клеткам, из которых он главным образом и состоит.

В периоде развития и роста организма, когда требуются большая кроветворная и костеобразующая функции, преобладает красный костный мозг (у плодов и новорожденных имеется только красный мозг). По мере роста ребенка красный мозг постепенно замещается желтым, который у взрослых полностью заполняет костномозговую полость трубчатых костей.

Снаружи кость, за исключением суставных поверхностей, покрыта надкостницей, periosteum (периост).

Надкостница - это тонкая, крепкая соединительнотканная пленка бледно-розового цвета, окружающая кость снаружи и прикрепленная к ней с помощью соединительнотканных пучков - прободающих волокон, проникающих в кость через особые канальцы. Она состоит из двух слоев: наружного волокнистого (фиброзного) и внутреннего костеобразующего (остеогенного, или камбиального). Она богата нервами и сосудами, благодаря чему участвует в питании и росте кости в толщину. Питание осуществляется за счет кровеносных сосудов, проникающих в большом числе из надкостницы в наружное компактное вещество кости через многочисленные питательные отверстия (foramina nutricia), а рост кости осуществляется за счет остеобластов, расположенных во внутреннем, прилегающем к кости слое (камбиальном). Суставные поверхности кости, свободные от надкостницы, покрывает суставной хрящ, cartilage articularis.

Таким образом, в понятие кости как органа входят костная ткань, образующая главную массу кости, а также костный мозг, надкостница, суставной хрящ и многочисленные нервы и сосуды.

Видео урок: Кость как орган. Развитие и рост костей. Классификация костей по М.Г. Привесу

Другие видео уроки по данной теме находятся:

Важная часть опорно-двигательной системы человека - скелет, состоящий из более чем двухсот различных костей. Он дает возможность людям двигаться, поддерживает внутренние органы. Кроме того, являются сосредоточением минеральных веществ, а также оболочкой, в которой содержится костный мозг.

Функции скелета

Различные виды костей, составляющих скелет человека, в первую очередь выступают в качестве средства опоры и поддержки тела. Некоторые из них служат вместилищем определенных внутренних органов, например головного мозга, размещающегося в костях черепа, легких и сердца, расположенных в грудной клетке, и других.

Возможностью совершать различные движения и передвигаться мы также обязаны собственному скелету. Кроме того, кости человека содержат в себе до 99% кальция, находящегося в организме. Большое значение в жизнедеятельности человека имеет красный костный мозг. Находится он в черепе, позвоночнике, грудине, ключицах и некоторых других костях. В костном мозге зарождаются клетки крови: эритроциты, тромбоциты и лейкоциты.

Строение кости

Анатомия кости имеет необычайные свойства, определяющие ее прочность. Скелет должен выдерживать нагрузку в 60-70 кг - это средний вес человека. Кроме того, кости туловища и конечностей работают как рычаги, позволяющие нам совершать движения и выполнять различные действия. Это достигается за счет их удивительного состава.

Кости состоят из органических (до 35%) и неорганических (до 65%) веществ. К первым относят белок, преимущественно коллаген, определяющий упругость и эластичность тканей. За твердость отвечают неорганические вещества - соли кальция и фосфора. Сочетание данных элементов придает костям особенную прочность, сравнимую, например, с чугуном. Они могут прекрасно сохраняться в течение многих лет, о чем свидетельствуют результаты различных раскопок. могут исчезнуть в результате прокаливания тканей, а также при воздействии на них серной кислотой. Минеральные же вещества очень устойчивы к внешним воздействиям.

Кости человека пронизаны специальными канальцами, по которым идут кровеносные сосуды. В их строении принято различать компактное и губчатое вещества. Их соотношение определяется местоположением кости в теле человека, а также выполняемыми ею функциями. На тех участках, где требуется устойчивость к большим нагрузкам, основным является плотное компактное вещество. Такая кость состоит из множества цилиндрических пластинок, помещенных одна в другую. Губчатое вещество своим внешним видом напоминает пчелиные соты. В его полостях находится красный костный мозг, а у взрослых людей - еще и желтый, в котором сосредоточиваются жировые клетки. Покрывает кость особая соединительнотканная оболочка - надкостница. Она пронизана нервами и сосудами.

Классификация костей

Существуют различные классификации, которые охватывают все виды костей скелета человека в зависимости от их расположения, строения и функций.

1. По местоположению:

  • черепные кости;
  • кости туловища;
  • кости конечностей.

2. По развитию выделяют следующие виды костей:

  • первичные (появляются из соединительной ткани);
  • вторичные (образуются из хряща);
  • смешанные.

3. Различают следующие виды костей человека по строению:

  • трубчатые;
  • губчатые;
  • плоские;
  • смешанные.

Таким образом, науке известны различные виды костей. Таблица дает возможность более наглядно представить данную классификацию.

Трубчатые кости

Трубчатые длинные кости состоят как из плотного, так и из губчатого вещества. Их можно разделить на несколько частей. Середина кости образована компактным веществом и имеет вытянутую трубчатую форму. Этот участок называется диафизом. В его полостях сначала содержится красный костный мозг, который постепенно заменяется желтым, содержащим жировые клетки.

На концах трубчатой кости расположен эпифиз - это участок, образованный губчатым веществом. Внутри него помещается красный костный мозг. Участок между диафизом и эпифизом называют метафизом.

В период активного роста детей и подростков в нем находится хрящ, за счет которого и растет кость. С течением времени анатомия кости меняется, метафиз полностью превращается в костную ткань. К длинным относят бедро, плечо, кости предплечья. Немного другое строение имеют трубчатые малые кости. Они обладают лишь одним истинным эпифизом и, соответственно, одним метафизом. К таким костям относят фаланги пальцев, кости плюсны. Они выполняют функцию коротких рычагов движения.

Губчатые виды костей. Картинки

Название костей часто указывает на их строение. Например, губчатые кости образованы из губчатого вещества, покрытого тонким слоем компактного. Они не имеют развитых полостей, поэтому красный костный мозг помещается в небольших ячейках. Губчатые кости также бывают длинными и короткими. К первым относятся, например, грудина и ребра. Короткие губчатые кости участвуют в работе мышц и являются своеобразным вспомогательным механизмом. К ним относятся позвонки.

Плоские кости

Эти виды костей человека, в зависимости от своего местоположения, имеют разное строение и выполняют те или иные функции. Кости черепа являются, прежде всего, защитой для головного мозга. Они образованы двумя тоненькими пластинами плотного вещества, между которыми расположено губчатое. В нем находятся отверстия для вен. Плоские кости черепа развиваются из соединительной ткани. Лопатка и также относятся к типу плоских костей. Образованы они практически полностью из губчатого вещества, которое развивается из хрящевой ткани. Такие виды костей выполняют функцию не только защиты, но и опоры.

Смешанные кости

Смешанные кости представляют собой соединение плоских и коротких губчатых или трубчатых костей. Они развиваются различными путями и выполняют те функции, которые необходимы на том или ином участке скелета человека. Такие виды костей, как смешанные, встречаются в теле височной кости, позвонках. К ним относится, например, ключица.

Хрящевая ткань

Хрящевая ткань имеет эластичную структуру. Она формирует ушные раковины, нос, некоторые части ребер. располагается также между позвонками, так как прекрасно сопротивляется деформирующей силе нагрузок. Она обладает высокой прочностью, отличной устойчивостью к истиранию и сдавливанию.

Соединение костей

Существуют разные которые определяют степень их подвижности. Кости черепа, например, имеют тонкую прослойку соединительной ткани. При этом они абсолютно неподвижны. Такое соединение называют фиброзным. Между позвонками также находятся участки соединительной или хрящевой тканей. Такое соединение называют полуподвижным, так как кости хоть и с ограничением, но могут немного перемещаться.

Наивысшей подвижностью обладают суставы, образующие синовиальные соединения. Кости в суставной сумке удерживаются связками. Эти ткани одновременно гибкие и прочные. Для того чтобы уменьшить трение, в суставе находится особая маслянистая жидкость - синовия. Она обволакивает концы костей, покрытые хрящевой тканью, и облегчает их движения.

Различают несколько видов суставов. Как название костей определяется их строением, так и название суставов зависит от формы костей, которые они соединяют. Каждый тип позволяет совершать определенные движения:

  • Шаровидный сустав. При таком соединении обеспечивается перемещение костей сразу во многих направлениях. К таким суставам относят плечевой, тазобедренный.
  • Блоковидный сустав (локтевой, коленный). Предполагает движения исключительно в одной плоскости.
  • Цилиндрический сустав дает возможность костям двигаться относительно друг друга.
  • Плоский сустав. Он малоподвижен, обеспечивает движения небольшого размаха между двумя костями.
  • Эллипсоидный сустав. Таким образом соединены, например, лучевая кость с костями запястья. Они могут совершать движения из стороны в сторону в пределах одной плоскости.
  • Благодаря седловидному суставу большой палец руки может перемещаться в разных плоскостях.

Влияние физических нагрузок

Степень физических нагрузок оказывает значительное влияние на форму и строение костей. У разных людей одна и та же кость может иметь свои особенности. При постоянных внушительных физических нагрузках утолщается компактное вещество, а полость, наоборот, сокращается в размерах.

Негативно влияет на состояние костей длительное пребывание в постели, малоподвижный образ жизни. Ткани истончаются, теряют свою прочность и эластичность, становятся хрупкими.

Меняется под действием физических нагрузок и форма костей. Те места, где на них воздействуют мышцы, могут стать более плоскими. При особенно интенсивном давлении с течением времени могут даже возникнуть небольшие углубления. На участках сильного растяжения, где на кости воздействуют связки, могут образовываться утолщения, различные неровности, бугорки. Особенно такие изменения характерны для людей, профессионально занимающихся спортом.

На форму костей оказывают влияние и разнообразные травмы, особенно полученные во взрослом возрасте. При срастании перелома могут возникнуть всевозможные деформации, которые зачастую негативно сказываются на эффективно управлять своим телом.

Возрастные изменения костей

В разные периоды жизни человека строение его костей неодинаково. У младенцев практически все кости состоят из губчатого вещества, которое покрывается тонким слоем компактного. Их непрерывный, до определенного времени, рост достигается за счет увеличения в размерах хрящей, которые постепенно замещаются костной тканью. Эта трансформация продолжается до 20 лет у женщин и примерно до 25 - у мужчин.

Чем моложе человек, тем больше органических веществ содержится в тканях его костей. Поэтому в раннем возрасте они отличаются эластичностью и гибкостью. У взрослого человека объем минеральных соединений в костной ткани составляет до 70%. При этом с определенного момента начинается уменьшение количества солей кальция и фосфора. Кости становятся хрупкими, поэтому у людей пожилого возраста часто возникают переломы даже в результате небольшой травмы или неосторожного резкого движения.

Подобные переломы заживают продолжительное время. Существует особое заболевание, характерное для людей пожилого возраста, особенно женщин - остеопороз. Для его профилактики при достижении возраста 50 лет необходимо обратиться к врачу для проведения некоторых исследований, позволяющих оценить состояние костной ткани. При соответствующем лечении значительно сокращается риск возникновения переломов и укорачивается время их заживления.

О своем организме человек знает много, например, где расположены органы, какую функцию они выполняют. Почему бы не проникнуть вглубь кости и не узнать ее строение и состав? Это очень занимательно, ведь химический состав костей весьма разнообразен. Он помогает понять, почему каждый костный элемент очень важен и какую функцию он несет.

Основная информация

Живая кость у взрослых людей имеет:

  • 50% - вода;
  • 21, 85% - вещества неорганического типа;
  • 15, 75% - жир;
  • 12,4% - коллагеновые волокна.

Вещества неорганического типа – это разные соли. Большая их часть представлена известковым фосфатом (шестьдесят процентов). В не таком большом количестве присутствует известковый карбонат и магниевый сульфат (5,9 и 1,4% соответственно). Интересно, что в костях представлены все земные элементы. Минеральные соли поддаются растворению. Для этого нужен некрепкий раствор азотной или соляной кислоты. Процесс растворения в этих веществах имеет свое название – декальцинация. После нее остается лишь органической вещество, которое сохраняет костную форму.

Органическое вещество отличается пористостью и эластичностью. Его можно сравнить с губкой. Что происходит, когда удаляется это вещество через сжигание? Кость по форме остается прежней, но теперь она становится хрупкой.

Понятно, что только взаимосвязь неорганических и органических веществ делает костный элемент прочным, упругим. Еще более прочной кость становится благодаря составу губчатого и компактного вещества.

Неорганический состав

Примерно век назад было высказано мнение, что костная ткань человека, точнее, ее кристаллы, по структуре похожи на апатиты. Со временем это было доказано. Костные кристаллы – гидроксилапатиты, а по форме похожи на палочки и пластины. Но кристаллы – это лишь доля минеральной фазы ткани, другая доля – это аморфный фосфат кальция. Его содержание зависит от возраста человека. У молодых людей, подростков и детей его много, больше, чем кристаллов. Впоследствии соотношение меняется, поэтому в более старшем возрасте больше уже кристаллов.

Каждый день кости человеческого скелета теряют и опять приобретают около восьмисот миллиграмм кальция

Организм взрослого человека имеет более одного килограмма кальция. Он содержится в основном в зубных и костных элементах. В сочетании с фосфатом образуется гидроксилапатит, который не растворяется. Особенность в том, что в костях основная часть кальция регулярно обновляется. Каждый день кости человеческого скелета теряют и опять приобретают около восьмисот миллиграмм кальция.

Минеральная доля имеет много ионов, но чистый гидроксилапатит их не содержит. Есть ионы хлора, магния и других элементов.

Органический состав

95% матрикса органического типа – это коллаген. Если говорить о его значимости, то вместе с минеральными элементами он является основным фактором, от которого зависят механические костные свойства. Коллаген ткани кости имеет особенности:

  • в нем больше оксипролина по сравнению с кожным коллагеном;
  • в нем много свободных ε-амино групп оксилизиновых и лизиновых остатков;
  • в нем больше фосфата, основная часть которого связана с сериновыми остатками.

Сухой деминерализованный костный матрикс содержит почти двадцать процентов белков неколлагеновых. Среди них есть части протеогликанов, но их немного. Органический матрикс содержит глюкозаминогликаны. Считается, что они напрямую связаны с оссификацией. Кроме того, если они изменяются, происходит окостенение. В костном матриксе есть липиды – прямой компонент ткани кости. Они участвуют в минерализации. Костный матрикс имеет еще одну особенность – в нем очень много цитрата. Почти девяносто его процентов – доля костной ткани. Считается, что цитрат важен для процесса минерализации.

Вещества кости

Большая часть костей взрослого человека имеет в составе пластинчатую костную ткань, из которой образуется два вида вещества: губчатой и компактное. Их распределение зависит от функциональных нагрузок, осуществляемых на кость.

Если рассматривать строение костей, то в образовании диафизов трубчатых костных элементов играет важную роль компактное вещество. Оно как тонкая пластина покрывает снаружи их эпифизы, плоские, губчатые кости, которые построены из губчатого вещества. В компактном веществе очень много тоненьких канальцев, которые состоят из кровеносных сосудов и волокон нервов. Некоторые каналы находятся в основном параллельно костной поверхности.

Стенки каналов, расположенных в центре, сформированы пластинками, толщина которых от четырех до пятнадцати мкм. Они как будто вставлены друг в друга. Один канал возле себя может иметь двадцать подобных пластинок. Состав кости включает в себя остеон, то есть объединение канала, расположенного в центре, с пластинками возле него. Между остеонами есть пространства, которые наполнены вставочными пластинками.

В строении кости не менее важное значение имеет губчатое вещество. Его название дает основание предположить, что оно похоже на губку. Так оно и есть. Она выстроена с балок, между которыми присутствуют ячейки. Кость человека постоянно испытывает нагрузки в виде сжатия и растяжения. Именно они определяют размеры балок, их расположение.

Костное строение включает надкостницу, то есть соединительнотканную оболочку. Она прочно соединена с костным элементом с помощью волокон, которые проходят в его глубину. Накостница имеет два слоя:

  1. Наружный, фиброзный. Он формируется волокнами коллагена, благодаря которым оболочка отличается прочностью. Этот слой имеет в строении нервы и сосуды.
  2. Внутренний, ростковый. В его строении есть остеогенные клетки, благодаря которым кость расширяется и восстанавливается после травм.

Получается, что надкостница выполняет три основные функции: трофическую, защитную, костеобразующую. Говоря о строении кости также следует упомянуть об эндосте. Им кость покрыта изнутри. Он похож на тонкую пластинку и несет в себе остеогенную функцию.

Еще немного о костях

Благодаря удивительному строению и составу кости обладают уникальными характеристиками. Они очень пластичны. Когда человек выполняет физические нагрузки, тренируется, кости проявляют гибкость и подстраиваются под изменяющиеся обстоятельства. То есть в зависимости от нагрузок увеличивается или уменьшается количество остеонов, меняется толщина пластинок веществ.

Каждый человек может посодействовать оптимальному костному развитию. Для этого необходимо регулярно и умеренно заниматься физическими упражнениями. Если в жизни преобладает сидячий образ действий, кости начнут ослабляться и станут более тонкими. Есть заболевания костей, которые ослабляют их, например, остеопороз, остеомиелит. На строение кости может оказать влияние профессия. Конечно, не последнюю роль играет наследственность.

Итак, на некоторые особенности костного строения человек не способен повлиять. Все же некоторые факторы зависят от него. Если с детства родители будут следить за тем, чтобы ребенок правильно питался и занимался умеренной физической нагрузкой, его кости будут в прекрасном состоянии. Это значительно повлияет на его будущее, ведь ребенок вырастет крепким, здоровым, то есть успешным человеком.

Зубы располагаются в костных лунках - отдельных ячейках альвеолярных отростков верхней и нижней челюстей. Костная ткань - разновидность соединительной ткани, развивающаяся из мезодермы и состоящая из клеток, межклеточного неминерализованного органического матрикса (остеоид) и основного минерализованного межклеточного вещества.

5.1. ОРГАНИЗАЦИЯ И СТРОЕНИЕ КОСТНОЙ ТКАНИ АЛЬВЕОЛЯРНЫХ ОТРОСТКОВ

Поверхность кости альвеолярного отростка покрыта надкостницей (периост ), образованной преимущественно плотной волокнистой соединительной тканью, в которой различают 2 слоя: наружный - волокнистый и внутренний - остеогенный, содержащий остеобласты. Из остеогенного слоя надкостницы в кость проходят сосуды и нервы. Толстые пучки прободающих коллагеновых волокон связывают кость с надкостницей. Надкостница осуществляет не только трофическую функцию, но и участвует в росте и регенерации кости. Вследствие этого костная ткань альвеолярных отростков обладает высокой регенеративной способностью не только в физиологических условиях, при ортодонтических воздействиях, но и после повреждения (переломы).

Минерализованный матрикс организован в трабекулы - структурно-функциональные единицы губчатой костной ткани. В лакунах минерализованного матрикса и по поверхности трабекул располагаются клетки костной ткани - остеоциты, остеобласты, остеокласты.

В организме постоянно происходят процессы обновления костной ткани путём сопряженного по времени костеобразования и рассасы- вания (резорбция) кости. В этих процессах активно участвуют различные клетки костной ткани.

Клеточный состав костной ткани

Клетки занимают всего лишь 1-5% общего объёма костной ткани скелета взрослого человека. Различают 4 типа клеток костной ткани.

Мезенхимальные недифференцированные клетки кости находятся главным образом в составе внутреннего слоя надкостницы, покрывающей поверхность кости снаружи - периоста, а также в составе эндоста, выстилающего контуры всех внутренних полостей кости, внутренние поверхности кости. Их называют выстилающими , или контурными , клетками. Из этих клеток могут образовываться новые клетки кости - остеобласты и остеокласты. В соответствии с этой их функцией их также называют остеогенными клетками.

Остеобласты - клетки, находящиеся в зонах костеобразования на внешних и внутренних поверхностях кости. Остеобласты содержат достаточно большое количество гликогена и глюкозы. С возрастом это количество уменьшается в 2-3 раза. Синтез АТФ на 60% связан с реакциями гликолиза. По мере старения остеобластов реакции гликолиза активируются. В клетках протекают реакции цитратного цикла, и наибольшей активностью обладает цитратсинтаза. Синтезируемый цитрат используется в дальнейшем на связывание Ca 2+ , необходимого для процессов минерализации. Поскольку функцией остеобластов является создание органического межклеточного матрикса кости, эти клетки содержат большое количество РНК, необходимых для синтеза белков. Остеобласты активно синтезируют и выделяют во внеклеточное пространство значительное количество глицерофосфолипидов, которые способны связывать Ca 2+ и участвовать в процессах минерализации. Клетки сообщаются между собой через десмосомы, которые позволяют проходить Ca 2+ и цАМФ. Остеобласты синтезируют и выделяют в окружающую среду фибриллы коллагена, протеогликаны и гликозаминогликаны. Они также обеспечивают непрерывный рост кристаллов гидроксиапатитов и выступают в качестве посредников при связывании минеральных кристаллов с белковой матрицей. По мере старения остеобласты превращаются в остеоциты.

Остеоциты - древовидные клетки костной ткани, включенные в органический межклеточный матрикс, которые контактируют друг с другом через отростки. Остеоциты взаимодействуют и с другими клетками костной ткани: остеокластами и остеобластами, а также с мезенхимальными клетками кости.

Остеокласты - клетки, выполняющие функцию разрушения кости; образуются из макрофагов. Они осуществляют непрерывный управляемый процесс реконструкции и обновления костной ткани, обеспечивая необходимый рост и развитие скелета, структуру, прочность и упругость костей.

Межклеточное и основное вещество костной ткани

Межклеточное вещество представлено органическим межклеточным матриксом, построенным из коллагеновых волокон (90-95%) и основным минерализованным веществом (5-10%). Коллагеновые волокна в основном расположены параллельно направлению уровня наиболее вероятных механических нагрузок на кость и обеспечивают упругость и эластичность кости.

Основное вещество межклеточного матрикса состоит главным образом из внеклеточной жидкости, гликопротеинов и протеогликанов, участвующих в перемещении и распределении неорганических ионов. Минеральные вещества, размещённые в составе основного вещества в органическом матриксе кости представлены кристаллами, главным образом гидроксиапатитом Ca 10 (PO 4) 6 (OH) 2 . Соотношение кальций/фосфор в норме составляет 1,3-2,0. Кроме того, в кости обнаружены ионы Mg 2+ , Na + , K + , SO 4 2- , HCO 3- , гидроксильные и другие ионы, которые могут принимать участие в образовании кристаллов. Минерализация кости связана с особенностями гликопротеинов костной ткани и активностью остеобластов.

Основными белками внеклеточного матрикса костной ткани являются коллагеновые белки I типа, которые составляют около 90% органического матрикса кости. Наряду с коллагеном I типа присутствуют следы других типов коллагена, таких как V, XI, XII. Не исключено, что эти типы коллагена принадлежат другим тканям, которые и находятся в костной ткани, но не входят в состав костного матрикса. Например, коллаген V типа обычно обнаруживается в сосудах, которые пронизывают кость. Коллаген XI типа находится в хрящевой ткани и может соответствовать остаткам кальцифицированного хряща. Источником коллагена XII типа могут быть «заготовки» коллагеновых фибрилл. В костной ткани коллаген I типа содержит производные моносахаридов, имеет меньшее количество поперечных связей, чем в других видах соединительной ткани, и эти связи формируются посредством аллизина. Ещё одним возможным отличием является то, что N-концевой пропептид коллагена I типа фосфорилирован и этот пептид частично сохраняется в минерализованном матриксе.

В костной ткани содержится около 10% неколлагеновых белков. Они представлены гликопротеинами и протеогликанами (рис. 5.1).

Из общего количества неколлагеновых белков 10% приходится на долю протеогликанов. Вначале синтезируется большой хондроитин-

Рис. 5.1. Содержание неколлагеновых белков в межклеточном матриксе костной ткани [по Gehron R. P., 1992].

содержащий протеогликан, который по мере формирования костной ткани разрушается и замещается двумя малыми протеогликанами: декорином и бигликаном. Малые протеогликаны внедряются в мине- рализованный матрикс. Декорин и бигликан активируют процессы дифференцировки и пролиферации клеток, а также вовлечены в регуляцию отложения минералов, морфологию кристалла и объединение элементов органического матрикса. Первым синтезируется бигликан, содержащий дерматансульфат; он влияет на процессы клеточной пролиферации. В фазу минерализации появляется бигликан, связаный с хондроитинсульфатом. Декорин синтезируется позднее, чем бигликан, в стадию отложения белков для формирования межклеточного матрикса; он остаётся и в фазе минерализации. Предполагают, что декорин «отшлифовывает» молекулы коллагена и регулирует диаметр фибрилл. В ходе формирования кости оба белка продуцируются остеобластами, но когда эти клетки становятся остеоцитами, они синтезируют только бигликан.

Из костного матрикса в небольших количествах были выделены и другие типы малых протеогликанов, которые выступают в качестве

рецепторов и облегчают связывание факторов роста с клеткой. Эти типы молекул находятся в мембране или прикрепляются к клеточной мембране посредством фосфоинозитоловых связей.

В костной ткани также присутствует гиалуроновая кислота. Вероятно, она играет важную роль в морфогенезе этой ткани.

Помимо протеогликанов в кости определяется большое количество разнообразных белков, относящихся к гликопротеинам (табл. 5.1).

Как правило, эти белки синтезируются остеобластами и способны связывать фосфаты или кальций; таким образом они принимают участие в формировании минерализованного матрикса. Связываясь с клет- ками, коллагенами и протеогликанами, они обеспечивают образование надмолекулярных комплексов матрикса костной ткани (рис. 5.2).

В остеоиде присутствуют протеогликаны: фибромодулин, бигликан, декорин, коллагеновые белки и морфогенетический белок кости. В минерализованном матриксе замурованы остеоциты, которые связаны с коллагенами. На коллагенах фиксированы гидроксиапатиты, остеокальцин, остеоадерин. В минерализованном межклеточном

Рис. 5.2. Участие различных белков в образовании матрикса костной ткани.

Таблица 5.1

Неколлагеновые белки костной ткани

Белок

Свойства и функции

Остеонектин

Гликофосфопротеин, способный связывать Са 2+

Щелочная фосфатаза

Отщепляет фосфат от органических соединений при щелочных значениях pH среды

Тромбоспондин

Белок с мол. массой 145 кДа, состоящий из трех идентичных субъединиц, связанных друг с другом дисульфидными связями. Каждая субъединица имеет несколько различных доменов, которые придают белку способность связываться с другими белками костного матрикса - гепарансодержащими протеогликанами, фибронектином, ламинином, коллагеном I и V типов и остеонектином. В N-кон- цевой области тромбоспондина содержится последовательность аминокислот, обеспечивающая прикрепление клеток. На связывание тромбоспондина с рецепторами на поверхности клетки влияет кон- центрация Ca 2+ . В костной ткани тромбоспондин синтезируется остеобластами

Фибронектин

Связывается с поверхностью клеток, фибрином, гепарином, бактериями, коллагеном. В костной ткани фибронектин синтезируется на ранних стадиях остеогенеза и сохраняется в минерализован- ном матриксе

Остеопонтин

Гликофосфопротеин, содержащий N- и О-связанные олигосахариды; участвует в адгезии клеток

Костный кислый гликопротеин-75

Белок с мол. массой 75 кДа, содержит сиаловые кислоты и остатки фосфата. Способен связывать ионы Са 2+ , присущ кости, дентину и хрящевой ростковой пластинке. Ингибирует процессы резорбции костной ткани

Костный сиалопротеин

Адгезивный гликопротеин, содержащий до 50% углеводов

Матриксный Gla-белок

Белок, содержащий 5 остатков 7-карбоксиглутами- новой кислоты; способен связываться с гидроксиапатитом. Появляется на ранних стадиях развития костной ткани; белок обнаружен также в лёгких, сердце, почках, хряще

матриксе остеоадерин связывается с остеонектином, а остеокальцин с коллагеном. Морфогенетический белок кости располагается в приграничной зоне между минерализованным и неминерализованным матриксом. Остеопонтин регулирует активность остеокластов.

Свойства и функции белков костной ткани представлены в табл. 5.1.

5.2. ФИЗИОЛОГИЧЕСКАЯ РЕГЕНЕРАЦИЯ КОСТНОЙ ТКАНИ

В процессе жизнедеятельности кость постоянно обновляется, то есть разрушается и восстанавливается. При этом в ней происходят два противоположно направленных процесса - резорбция и восстановление. Соотношение этих процессов называется ремоделированием костной ткани.

Известно, что каждые 30 лет костная ткань изменяется почти полностью. В норме кость «растет» до 20-летнего возраста, достигая пика костной массы. В этот период прирост костной массы составляет до 8% в год. Далее до 30-35-летнего возраста идет период более или менее устойчивого состояния. Затем начинается естественное постепенное снижение костной массы, составляющее обычно не более 0,3-0,5% в год. После наступления менопаузы у женщин отмечается максимальная скорость потери костной ткани, которая достигает 2-5% в год и продолжается в таком темпе до 60-70 лет. В итоге женщины теряют от 30 до 50% костной ткани. У мужчин эти потери обычно составляют 15-30%.

Процесс ремоделирования костной ткани происходит в несколько этапов (рис. 5.3). На первом этапе участок костной ткани, подле-

Рис. 5.3. Стадии ремоделирования костной ткани [по Martin R.B., 2000, с изменениями].

жащий резорбции запускают остеоциты. Для активации процесса необходимо участие паратиреоидного гормона, инсулиноподобного фактора роста, интерлейкинов-1 и -6, простагландинов, кальцитриола, фактора некроза опухоли. Тормозится этот этап ремоделирования эстрогенами. На данном этапе поверхностные контурные клетки изменяют свою форму, превращаясь при этом из плоских округлых клеток в кубические.

Остеобласты и Т-лимфоциты секретируют лиганды рецепторов активатора фактора нуклеации каппа В (RANKL) и до определённого момента молекулы RANKL могут оставаться связанными с поверхностью остеобластов или стромальных клеток.

Из стволовой клетки костного мозга образуются предшественники остеокластов. Они имеют мембранные рецепторы, называемые рецепторами активатора фактора нуклеации каппа В (RANK). На следующем этапе RANK-лиганды (RANKL) связываются с RANK- рецепторами, что сопровождается слиянием нескольких предшественников остеокластов в одну крупную структуру и формируются зрелые многоядерные остеокласты.

Образующийся активный остеокласт создаёт на своей поверхности гофрированный край и зрелые остеокласты начинают резорбировать

костную ткань (рис. 5.4). На стороне прилегания остеокласта к разрушаемой поверхности различают две зоны. Первая зона - наиболее обширная, называемая щеточной каемкой, или гофрированным краем. Гофрированный край - это скрученная спиралью мембрана с множественными цитоплазматическими складками, которые обращены в сторону резорбции на костной поверхности. Через мембрану остеокласта освобождаются лизосомы, содержащие большое количество гидролитических ферментов (катепсины К, D, B, кислая фосфатаза, эстераза, гликозидазы и др). В свою очередь, катепсин К активирует матриксную металлопротеиназу-9, которая участвует в деградации коллагена и протеогликанов межклеточного матрикса. В этот период в остеокластах растёт активность карбоангидразы. Ионы НСО 3 - обме- ниваются на Cl - , которые накапливаются в гофрированном крае; туда же переносятся ионы H + . Секреция H + осуществляется за счёт очень активной в остеокластах Н + /К + -АТФазы. Развивающийся ацидоз способствует активации лизосомных ферментов и способствует разруше- нию минерального компонента.

Вторая зона окружает первую и как бы герметизирует область действия гидролитических ферментов. Она свободна от органелл и назы-

Рис. 5.4. Активация преостеокласта RANKL и формирование активным остеобластом гофрированной каймы, приводящей к резорбции костной ткани [по Edwards P. A., 2005, с изменениями].

вается чистой зоной, поэтому костная резорбция происходит только под гофрированным краем в замкнутом пространстве.

На стадии образования остеокластов из предшественников процесс может блокироваться белком остеопротегерином, который, свободно перемещаясь, способен связывать RANKL и таким образом предотвращать взаимодействие RANKL с RANK-рецепторами (см. рис. 5.4). Остеопротегерин - гликопротеин с мол. массой 60-120 кДа, относящийся к семейству рецепторов ФНО. Ингибируя связывание RANK с RANK-лигандом, остеопротегерин тем самым подавляет мобилизацию, пролиферацию и активацию остеокластов, поэтому увеличение синтеза RANKL приводит к резорбции костной ткани и, следовательно, к потере костной массы.

Характер ремоделирования костной ткани во многом определяется балансом между продукцией RANKL и остеопротегерина. Недифференцированные стромальные клетки костного мозга в большей степени синтезируют RANKL и в меньшей степени остеопротегерин. Возникающий дисбаланс системы RANKL/остеопротегерин при увеличении RANKL приводит к резорбции кости. Данное явление наблюдается при постменопаузальном остеопорозе, болезни Педжета, костных потерях при метастазах рака и ревматоидном артрите.

Зрелые остеокласты начинают активно поглощать кость, а завершают разрушение органической матрицы межклеточного вещества кости макрофаги. Резорбция длится около двух недель. Затем остеокласты в соответствии с генетической программой умирают. Апоптоз остеокластов может задерживаться при недостатке эстрогенов. На последнем этапе в зону разрушения прибывают плюрипотентные стволовые клетки, которые дифференцируются в остеобласты. В дальнейшем остеобласты синтезируют и минерализуют матрикс в соответствии с новыми условиями статической и динамической нагрузки на кость.

Существует большое число факторов, стимулирующих развитие и функции остеобластов (рис. 5.5). Вовлечение в процесс перестройки кости остеобластов стимулируется различными факторами роста - ТФР-(3, морфогенетическим белком кости, инсулиноподобным фактором роста, фактором роста фибробластов, тромбоцитов, колониестимулирующим и гормонами - паратирином, кальцитриолом, а также связывающим фактором ядра α-1 и тормозится белком лептином. Лептин - белок с мол. массой 16 кДа образуется преимущественно в адипоцитах; своё действие реализует через повышение синтеза цитокинов, факторов роста эпителия и кератиноцитов.

Рис. 5.5. Ремоделирование костной ткани.

Активные секретирующие остеобласты создают слои остеоида - неминерализованного матрикса кости и медленно восполняют полость резорбции. При этом они секретируют не только различные факторы роста, а также белки межклеточного матрикса - остеопонтин, остеокальцин и другие. Когда образующийся остеоид достигает диаметра 6?10 -6 м, он начинает минерализоваться. Скорость процесса минерализации зависит от содержания кальция, фосфора и ряда микроэлементов. Процесс минерализации управляется остеобластами и тормозится пирофосфатом.

Образование кристаллов минерального остова кости индуцирует коллаген. Формирование минеральной кристаллической решётки начинается в зоне, находящейся между коллагеновыми фибриллами. Затем они, в свою очередь, становятся центрами для отложения в пространстве между коллагеновыми волокнами (рис. 5.6).

Формирование кости происходит только в непосредственной близости от остеобластов, причём минерализация начинается в хряще,

Рис. 5.6. Отложение кристаллов гидроксиапатита на коллагеновых волокнах.

который состоит из коллагена, находящегося в протеогликановом матриксе. Протеогликаны повышают растяжимость коллагеновой сети. В зоне кальцификации происходит разрушение комплексов белок-полисахарид в результате гидролиза белкового матрикса лизосомальными ферментами клеток кости. По мере роста кристаллы вытесняют не только протеогликаны, но и воду. Плотная, полностью минерализованная кость, практически обезвожена; коллаген составляет 20% массы и 40% объема такой ткани; остальное приходится на долю минеральной части.

Начало минерализации характеризуется усиленным поглощением остеобластами молекул O 2 , активацией окислительно-восстановительных процессов и окислительного фосфорилирования. В митохондриях накапливаются ионы Ca 2+ и PO 4 3- . Начинается синтез коллагеновых и неколлагеновых белков, которые затем после посттрансляционной модификации секретируются из клетки. Формируются различные везикулы, в составе которых переносится коллаген, протеогликаны и гликопротеины. От остеобластов отпочковываются особые образования, называемые матриксными пузырьками, или мембранными везикулами. Они содержат в большой концентрации ионы Ca 2+ , которая превышает в 25-50 раз содержание их в остеобластах, а также глицерофосфолипиды и ферменты - щелочную фосфатазу, пирофосфатазу,

аденозинтрифосфатазу и аденозинмонофосфатазу. Ионы Ca 2+ в мембранных везикулах связаны преимущественно с отрицательно заряженым фосфатидилсерином. В межклеточном матриксе мембранные везикулы разрушаются с освобождением ионов Ca 2+ , пирофосфатов, органических соединений, связанных с остатками фосфорной кислоты. Присутствующие в мембранных везикулах фосфогидролазы, и в первую очередь щелочная фосфатаза, отщепляют фосфат от органических соединений, а пирофосфат гидролизуется пирофосфатазой; ионы Ca 2+ соединяются с PO 4 3- , что приводит к появлению аморфного фосфата кальция.

Одновременно происходит частичное разрушение протеогликанов, связанных с коллагеном I типа. Освобождающиеся фрагменты протеогликанов, заряженные отрицательно, начинают связывать ионы Ca 2+ . Некоторое число ионов Ca 2+ и PO 4 3 образуют пары и триплеты, которые связываются с коллагеновыми и неколлагеновыми белками, формирующими матрицу, что сопровождается образованием кластеров, или ядер. Из белков костной ткани наиболее активно связывают ионы Ca 2+ и PO 4 3 остеонектин и матриксные Gla-белки. Коллаген костной ткани связывает ионы РО 4 3 через ε-аминогруппу лизина с образованием фосфоамидной связи.

На образовавшемся ядре возникают спиралевидые структуры, рост которых идет по обычному принципу добавления новых ионов. Шаг такой спирали равен высоте одной структурной единицы кристалла. Формирование одного кристалла приводит к появлению других кристаллов; этот процесс называется эпитаксисом, или эпитаксической нуклеацией.

Рост кристалла высоко чувствителен к присутствию других ионов и молекул, которые ингибируют кристаллизацию. Концентрация этих молекул может быть небольшой, и они оказывают влияние не только на скорость, но на форму и направление роста кристаллов. Предполагают, что такие соединения адсорбируются на поверхности кристалла и тормозят адсорбцию других ионов. Такими веществами являются, например, гексаметафосфат натрия, который тормозит преципитацию карбоната кальция. Пирофосфаты, полифосфаты и полифосфонаты также тормозят рост кристаллов гидроксиапатита.

Через несколько месяцев, после того как полость резорбции восполнится костной тканью, плотность новой кости увеличивается. Остеобласты начинают превращаться в контурные клетки, которые участвуют в непрерывном выведении кальция из кости. Некоторые

из остеобластов превращаются в остеоциты. Остеоциты остаются в кости; они связаны друг с другом длинными клеточными отростками и способны воспринимать механические воздействия на кость.

По мере дифференцировки и старения клеток меняется характер и интенсивность обменных процессов. С возрастом в 2-3 раза уменьшается количество гликогена; освобождающаяся глюкоза в молодых клетках на 60% используется в реакциях анаэробного гликолиза, а в старых на 85%. Синтезированные молекулы АТФ необходимы для жизнеобеспечения и минерализации костных клеток. В остеоцитах остаются лишь следы гликогена, и основным поставщиком молекул АТФ является только гликолиз, за счёт которого поддерживается постоянство органического и минерального состава в уже минерализованных отделах костной ткани.

5.3. РЕГУЛЯЦИЯ МЕТАБОЛИЗМА В КОСТНОЙ ТКАНИ

Ремоделирование костной ткани регулируется системными (гормоны) и местными факторами, которые обеспечивают взаимодейс- твие между остеобластами и остеокластами (табл. 5.2).

Системные факторы

Образование кости в известной степени зависит от числа и активности остеобластов. На процесс образования остеобластов влияют

Таблица 5.2

Факторы, регулирующие процессы ремоделирования кости

соматотропин (гормон роста), эстрогены, 24,25(ОН) 2 D 3 , которые стимулируют деление остеобластов и превращение преостеобластов в остеобласты. Глюкокортикоиды, напротив, подавляют деление остеобластов.

Паратирин (паратгормон) синтезируется в паращитовидных железах. Молекула паратирина состоит из одной полипептидной цепи, содержащей 84 аминокислотных остатков. Синтез паратирина стимулирует адреналин, поэтому в условиях острого и хронического стресса количество этого гормона увеличивается. Паратирины активирует пролиферацию клеток-предшественников остеобластов, продлевает время их полужизни и ингибирует апоптоз остеобластов. В костной ткани рецепторы для паратирина присутствуют в мембранах остеобластов и остеоцитов. Остеокласты лишены рецепторов для данного гормона. Гормон связывается с рецепторами остеобластов и активирует аденилатциклазу, что сопровождается увеличением количества 3" 5" цАМФ. Такое повышение содержания цАМФ способствует интенсивному поступлению ионов Ca 2+ из внеклеточной жидкости. Поступивший кальций образует комплекс с кальмодулином и далее происходит активация кальцийзависимой протеинкиназы с последующим фос- форилированием белков. Связываясь с остеобластами, паратирин вызывает синтез остеокласт-активирующего фактора - RANKL, способного связываться с преостеокластами.

Введение больших доз паратирина приводит к гибели остеобластов и остеоцитов, что сопровождается увеличением зоны резорбции, повышением уровня кальция и фосфатов в крови и моче с одновре- менным повышением экскреции гидроксипролина вследствие разрушения коллагеновых белков.

Рецепторы к паратирину располагаются и в почечных канальцах. В проксимальных отделах почечных канальцев гормон ингибирует реабсорбцию фосфата и стимулирует образование 1,25(ОН) 2 D 3 . В дистальных отделах почечных канальцев паратирин усиливает реабсорбцию Ca 2+ . Таким образом, паратирин обеспечивает повышение уровня кальция и снижение фосфатов в плазме крови.

Паротин - гликопротеин, выделяемый околоушными и поднижне- челюстными слюнными железами. Белок состоит из α-, β -, и γ-субъединиц. Активным началом паротина является γ-субъединица, которая оказывает влияние на мезенхимные ткани - хрящ, трубчатые кости, дентин зуба. Паротин усиливает пролиферацию хондрогенных клеток, стимулирует синтез нуклеиновых кислот и ДНК в одонтобластах, про-

цессы минерализации дентина и костей. Эти процессы сопровождаются понижением содержания кальция и глюкозы в плазме крови.

Кальцитонин - полипептид, состоящий из 32 аминокислотных остат- ков. Секретируется парафолликулярными К-клетками щитовидной железы или С-клетками паращитовидных желёз в виде высокомолекулярного белка-предшественника. Секреция кальцитонина возрастает при увеличении концентрации ионов Са 2+ и уменьшается при понижении концентрации ионов Са 2+ в крови. Она также зависит от уровня эстрогенов. При недостатке эстрогенов секреция кальцитонина снижается. Это вызывает усиление мобилизации кальция в костной ткани и способствует развитию остеопороза. Кальцитонин связывается с специфическими рецепторами остеокластов и клеток почечных канальцев, что сопровождается активацией аденилатциклазы и повышением образования цАМФ. Кальцитонин влияет на транспорт ионов Ca 2+ через клеточные мембраны. Он стимулирует поглощение ионов Ca 2+ митохондриями и тем самым задерживает отток ионов Ca 2+ из клетки. Этот зависит от количества АТФ и соотношения ионов Na + и K + в клетке. Кальцитонин угнетает распад коллагена, что проявляется уменьшением экскреции с мочой гидроксипролина. В клетках почечных канальцев кальцитонин ингибирует гидроксилирование 25(ОН)D 3 .

Таким образом, кальцитонин подавляет активность остеокластов и ингибирует освобождение ионов Ca 2+ из костной ткани, а также уменьшает реабсорбцию ионов Ca 2+ в почках. В результате тормозится резорбция костной ткани, стимулируются процессы минерализации, что проявляется понижением уровня кальция и фосфора в плазме крови.

Йодсодержащие гормоны щитовидной железы - тироксин (Т4) и трийодтиронин (Т3) обеспечивают оптимальный рост костной ткани. Тиреоидные гормоны способны стимулировать секрецию гормонов роста. Они повышают как синтез мРНК инсулиноподобного фактора роста 1 (ИФР-1), так и продукцию самого ИФР-1 в печени. При гипертиреозе подавляется дифференцировка остеогенных клеток и синтез белка в этих клетках, снижается активность щелочной фосфатазы. За счёт усиленной секреции остеокальцина активируется хемотаксис остеокластов, что ведёт к резорбции костной ткани.

Половые стероидные гормоны участвуют в процессах ремоделирования костной ткани. Воздействие эстрогенов на костную ткань проявляется в активации остеобластов (прямое и опосредованное действие), угнетении остеокластов. Они также способствуют всасыванию ионов Ca 2+ в желудочно-кишечном тракте и его отложению в костной ткани.

Женские половые гормоны стимулируют продукцию кальцитонина щитовидной железой и снижают чувствительность костной ткани к паратирину. Они также вытесняют на конкурентной основе кортикостероиды из их рецепторов в костной ткани. Андрогены, оказывая анаболическое действие на костную ткань, стимулируют биосинтез белка в остеобластах, а также ароматизируются в жировой ткани в эстрогены.

В условиях дефицита половых стероидов, который имеет место в менопаузе, процессы костной резорбции начинают преобладать над процессами ремоделирования костной ткани, что и приводит к раз- витию остеопении и остеопороза.

Глюкокортикоиды синтезируются в коре надпочечников. Основной глюкокортикоид человека - кортизол. Глюкокортикоиды скоординировано действуют на разные ткани и разные процессы - как анаболические, так и катаболические. В костной ткани кортизол тормозит синтез коллагена I типа, некоторых неколлагеновых белков, протеогликанов и остеопонтина. Глюкокортикоиды также уменьшают количество тучных клеток, являющихся местом образования гиа- луроновой кислоты. Под влиянием глюкокортикоидов ускоряется распад белков. Глюкокортикоиды подавляют всасывание ионов Ca 2+ в кишечнике, что сопровождается снижением его в сыворотке крови. Это понижение приводит к выбросу паратирина, который стимулирует образование остеокластов и резорбцию кости (рис. 5.7). Кроме того, кортизол в мышцах и костях стимулирует распад белков, что также нарушает формирование костной ткани. В конечном итоге действия глюкокортикоидов приводят к убыли костной ткани.

Витамин D 3 (холекальциферол) поступает с пищей, а также образуется из предшественника 7-дегидрохолестерола под влиянием ультрафиолетовых лучей. В печени холекальциферол превращается в 25(ОН)D 3 , а в почках происходит дальнейшее гидроксилирование 25(ОН)D 3 и образуются 2 гидроксилированных метаболита - 1,25(ОН) 2 D 3 и 24,25(ОН) 2 D 3 . Метаболиты витамина D 3 регулируют хондрогенез и остеогенез уже в процессе эмбрионального развития. В отсутствии витамина D 3 невозможна минерализация органического матрикса, при этом не образуется сосудистая сеть, а метафизарная кость не способна сформироваться должным образом. 1,25(ОН) 2 D 3 связывается с хондробластами, находящимся в активном состоянии, а 24,25(ОН) 2 D 3 - с клетками в состоянии покоя. 1,25(ОН) 2 D 3 регулирует зоны роста через образование комплекса с ядерным рецептором для этого витамина. Также показано, что 1,25(ОН) 2 D 3 способен связы-

Рис. 5.7. Схема влияния глюкокортикоидов на обменные процессы, приводящие к убыли костной ткани

ваться с мембранно-ядерным рецептором, что приводит к активации фосфолипазы С и образованию инозитол-3-фосфата. Кроме того, образующийся комплекс активируется фосфолипазой А 2 . Из осво- бождающейся арахидоновой кислоты синтезируется простагландин Е 2 , который также влияет на ответ хондробластов при их связывании с 1,25(ОН) 2 D 3 . Напротив, после связывания 24,25(ОН) 2 D 3 со своим мембранно-связывающимся рецептором, активируется фосфолипаза С, а затем протеинкиназа С.

В хрящевой зоне роста эпифизов костной ткани 24,25(ОН) 2 D 3 стимулирует дифференцировку и пролиферацию прехондробластов, которые содержат специфические рецепторы к данному метаболиту. Метаболиты витамина D 3 оказывают влияние на формирование и функциональное состояние височно-нижнечелюстного сустава.

Витамин А . При недостатке и избыточном поступлении витамина А в организм детей нарушается рост костей и происходит их деформация. Вероятно, эти явления обусловлены деполимеризацией и гидролизом хондроитинсульфата, входящего в состав хряща.

Витамин С . При недостатке аскорбиновой кислоты в мезенхемаль- ных клетках не происходит гидроксилирование остатков лизина и пролина, что приводит к нарушению образования зрелого коллагена. Образующийся незрелый коллаген не способен связывать ионы Ca 2+ и таким образом нарушаются процессы минерализации.

Витамин Е . При дефиците витамина Е в печени не образуется 25(ОН)D 3 - предшественник активных форм витамина D 3 . Дефицит витамина Е также может привести к снижению уровня магния в костной ткани.

Локальные факторы

Простагландины ускоряют выход ионов Ca 2+ из кости. Экзогенные простагландины увеличивают генерацию остеокластов, которые раз- рушают кость. Оказывают катаболическое воздействие на обмен белков в костной ткани и ингибирует их синтез.

Лактоферрин - железосодержащий гликопротеин, в физиологической концентрации стимулирует пролиферацию и дифференцировку остеобластов, а также ингибирует остеокластогенез. Митогенный эффект лактоферрина на остеобластоподобные клетки осуществляется через специфические рецепторы. Образовавшийся комплекс путём эндоцитоза поступает в клетку, и лактоферрин фосфорилирует митоген - активирующие протеинкиназы. Таким образом, лактоферрин выполняет роль фактора роста кости и её здоровья. Может применяться в качестве анаболического фактора при остеопорозе.

Цитокины - низкомолекулярные полипептиды, обусловливающие взаимодействие клеток иммунной системы. Они обеспечивают ответную реакцию на внедрение чужеродных тел, иммунное повреждение, а также воспаления, репарации и регенерации. Они представлены пятью большими группами белков, одной из которых являются интерлейкины.

Интерлейкины (ИЛ ) - белки (от ИЛ-1 до ИЛ-18), синтезируемые в основном Т-клетками лимфоцитов, а также мононуклеарными фагоцитами. Функции ИЛ связаны с активностью других физиологически активных пептидов и гормонов. В физиологической концентрации подавляют рост, дифференцировку и продолжительность жизни клеток. Cнижают продукцию коллагеназы, адгезию эндотелиальных клеток к нейтрофилам и эозинофилам, продукцию NO и, как следс- твие, наблюдается уменьшение деградации хрящевой ткани и резорбция кости.

Процесс резорбции костной ткани может активироваться при ацидозе и большими количествами интегринов, ИЛ и витамина A, но тормозится эстрогенами, кальцитонином, интерфероном и морфогенетическим белком кости.

Маркёры метаболизма костной ткани

Биохимические маркёры дают информацию о патогенезе заболеваний скелета и о фазах ремоделирования костной ткани. Различают биохимические маркёры формирования и резорбции кости, характе- ризующие функции остеобластов и остеокластов.

Прогностическая значимость определения маркёров метаболизма костной ткани:

Проведённый скрининг с использованием данных маркёров позволяет определить пациентов с высоким риском развития остеопороза; высокие уровни маркёров резорбции костей могут быть связаны с

увеличением риска переломов; повышение уровня маркёров метаболизма костной ткани у пациентов с остеопорозом более чем в 3 раза по сравнению с показателями нормы предполагает иную костную патологию, включая злокачественную; маркёры резорбции могут быть использованы в качестве дополнительных критериев при решении вопроса о назначении специальной терапии при лечении костной патологии. Маркёры резорбции кости . Во время обновления костной ткани коллаген I типа, который составляет более 90% органического матрикса кости и синтезируется непосредственно в костях, деградирует, а небольшие пептидные фрагменты попадают в кровь или выделяются почками. Продукции деградации коллагена можно определять как в моче, так и в сыворотке крови. Эти маркёры можно использовать при терапии препаратами, снижающими резорбцию костей, у пациентов с болезнями, связанными с нарушениями метаболизма костной ткани. В качестве критериев резорбции костной ткани выступают продукты деградации коллагена I типа: N- и С-телопептиды и тартрат-резистентная кислая фосфатаза. При первичном остеопорозе и болезни Педжета происходит отчетливое повышение С-концевого телопептида коллагена I типа и количество этого маркёра увеличивается в сыворотке крови в 2 раза.

Распад коллагена - единственный источник свободного гидроксипролина в организме. Преобладающая часть гидроксипролина

катаболизируется, а часть выделяется с мочой, главным образом, в составе небольших пептидов (ди- и трипептидов). Поэтому содержание гидроксипролина в крови и моче отражает баланс скорости катаболизма коллагена. У взрослого человека в сутки экскретируется 15-50 мг гидроксипролина, в молодом возрасте до 200 мг, а при некоторых болезнях, связанных с поражением коллагена, например: гиперпаратироидизме, болезни Педжета и наследственной гипергидроксипролинемии, причиной которой является дефект фермента гидроксипролиноксидазы, количество в крови и выделяемого с мочой гидроксипролина увеличивается.

Остекласты секретируют тартрат-резистентную кислую фосфатазу. При возрастании активности остеокластов происходит увеличение содержания тартрат-резистентной кислой фосфатазы и она попадает в повышенном количестве в кровоток. В плазме крови активность этого фермента возрастает при болезни Педжета, онкологических заболеваниях с метастазами в кость. Определение активности этого фермента особенно полезно при мониторинге лечения остеопороза и онкологических заболеваний, сопровождающихся поражением костной ткани.

Маркёры формирования кости . Формирование костной ткани оценивают по количеству остеокальцина, костного изофермента щелочной фосфатазы и остеопротегерина. Измерение количества сывороточного остеокальцина позволяет определять риск развития остеопороза у женщин, проводить мониторинг костного метаболизма во время менопаузы и гормональной заместительной терапии. Рахит у детей раннего возраста сопровождается снижением в крови содержания остеокальцина и степень снижения его концентрации зависит от выраженности рахитического процесса. У больных с гиперкортицизмом и пациентов, получающих преднизолон, значительно снижено содержание остеокальцина в крови, что отражает подавление процессов костеобразования.

Изофермент щелочной фосфатазы присутствует на клеточной поверхности остеобластов. При увеличенном синтезе фермента клетками костной ткани повышается его количество в плазме крови, поэтому определение активности щелочной фосфатазы, особенно костного изофермента, является информативным показателем костного ремоделирования.

Остеопротегерин выступает в качестве рецептора ФНО. Связываясь с преостеокластами, он ингибирует мобилизацию, пролиферацию и активацию остеокластов.

5.4. РЕАКЦИЯ КОСТНОЙ ТКАНИ НА ДЕНТАЛЬНЫЕ

ИМПЛАНТАТЫ

При различных формах адентии альтернативой съёмному протезированию являются внутрикостные дентальные имплантаты. Реакцию костной ткани на имплантат можно рассматривать как частный случай репаративной регенерации.

Различают три вида соединения дентальных имплантатов с костной тканью:

Прямое приживление - остеоинтеграция;

Фиброзно-оссальная интеграция, когда вокруг дентального имплантата образуется слой фиброзной ткани толщиной около 100 мкм;

Периодонтальное соединение (самый редкий вид), образующееся в случае периодонтального связочно-подобного сращения с периимплантационными коллагеновыми волокнами или (в некоторых случаях) цементирование внутрикостного дентального имплантата.

Считают, что в процессе остеоинтеграции после постановки дентальных имплантатов образуется тонкая зона из протеогликанов, которая лишена коллагена. Зона склеивания дентального имплантата с костью обеспечивается двойным слоем протеогликанов, включающим молекулы декорина.

При фиброзно-оссальной интеграции в соединении имплантата с костной тканью также участвуют многочисленные компоненты внеклеточного матрикса. За устойчивость имплантата в его капсуле отвечают коллагены I и III типа, а фибронектин играет основную роль в связывании элементов соединительной ткани с имплантатами.

Однако через какой-то период времени под действием механической нагрузки растёт активность коллагеназы, катепсина К и кислой фосфатазы. Это приводит к убыли костной ткани в периимплантационной области и происходит дезинтеграция дентального имплантата. Ранняя дезинтеграция внутрикостных дентальных имплантатов происходит на фоне сниженного количества в кости фибронектина, Gla-белка, тканевого ингибитора матриксных металлопротеиназ (ТИМП-1).