Тип клеток нервной ткани человека. Микроструктура нервной ткани

Строение сердечной ткани несколько различное у животных разных видов. Из домашних животных у лошади мышечные волокна уложены наиболее компактно, имеют лентовидную форму, боковые перемычки редки, эндомизий развит слабо, кровоснабжение обильное, миоциты узкие (10-21 мкм) и длинные (110-130 мкм), с большим количеством миофибрилл, которые часто лежат в центре клеток, оттесняя длинные узкие ядра на периферию. Поперечная исчерченность хорошо видна. У рогатого скота волокна полигональные, миоциты короче и шире, боковые перемычки встречаются чаще, а количество миофибрилл меньше, чем у лошади. Располагаются они по периферии миоцитов. У свиньи сетчатость сердечной мышечной ткани наиболее выражена, волокна округлой формы, эндомизий хорошо развит, но капилляры встречаются реже, чем у лошади, миофибрилл меньше, поперечная исчерченность слабо выражена.

Своеобразие сердечной мышечной ткани состоит в том, что она, представляя собой по существу симпласт и сокращаясь как единое целое, в то же время мало страдает при повреждении отдельных миоцитов. Сердечная мышечная ткань не имеет камбиальных элементов и на тренинг или травму отвечает физиологической гипертрофией миоцитов. Поврежденные миоциты погибают и замещаются соединительной тканью.

Интенсивность и частота сокращений сердечной мышцы регулируются нервными импульсами. Однако сердечная мышца обладает и собственной системой регуляции движений. Правда, без регуляции извне частота сердечных сокращений уменьшается вдвое. Обеспечивается автоматизм сокращений проводящей мускулатурой, построенной из атипичных мышечных волокон (Пуркинье). Состоят они из крупных клеток с малым количеством миофибрилл и образуют проводящую систему сердца, которая делает согласованной сокращения предсердий и желудочков сердца, обеспечивает ритмичную смену рабочего акта (систолы и диастолы) восстановительным периодом (расслабление сердечной мышцы).

Вопросы для самоконтроля. 1. Каково происхождение, строение, распространение, особенности функционирования гладкой мышечной ткани? 2. Происхождение и строение поперечнополосатой скелетной мышечной ткани? 3. Строение мышечного волокна. 4. Что такое саркомер, каково его строение и функция? 5. В чем особенности строения и функций сердечной поперечнополосатой мышечной ткани?

Глава 10. НЕРВНАЯ ТКАНЬ

Нервная ткань высокоспециализированная, из нее построена вся нервная система. В центральной нервной системе она образует серое и белое вещест-

Вракин В.Ф, Сидорова М.В.

МОРФОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

во головного и спинного мозга, в периферической- ганглии, нервы, нервные окончания. Нервная ткань способна воспринимать раздражения из внешней и внутренней среды, возбуждаться под их влиянием, вырабатывать, проводить

и передавать импульсы, организовывать ответные реакции. Сумма этих свойств нервной ткани проявляется в основной функции нервной системы: регуляции и координации деятельности различных тканей, органов и систем организма.

Развивается нервная ткань из нейроэктодермы. Из нее образуется сначала нервная пластинка, а затем нервная трубка, вдоль которой с двух сторон лежат нервные гребни (валики). В нервной трубке и гребнях формируются все клетки нервной ткани. Строение нервной ткани в различных участках нервной системы сильно различается. Тем не менее она везде состоит из нейронов и нейроглии. Между ними имеются межклеточные пространства, заполненные тканевой жидкостью. Межклеточные пространства мозга составляют 15-20% его объема. В тканевой жидкости происходит диффузия веществ между капиллярами и клетками нервной ткани. Нейроны - нервные клетки, способные к выработке и проведению нервного импульса. Нейроглия состоит из клеток, выполняющих вспомогательные функции.

Строение и виды нейронов. Нейрон (нейроцит) - основная структурная

и функциональная единица нервной ткани (рис. 32). В нем различают тело

Перикарион и отростки. Нейроны разных отделов нервной системы отличаются друг от друга по функции, форме, размерам, количеству и характеру ветвления отростков, по выделяемому медиатору. По функции нейроны бывают чувствительные (рецепторные, или афферентные), двигательные (эффекторные, или эфферентные) и вставочные (ассоциативные). Размеры нейроцитов колеблются от 4 мкм у клеток-зерен мозжечка до 130 мкм (у гигантопирамидных клеток коры).

Нейроны в основном одноядерные клетки. Ядро крупное, округлое, расположено обычно в центре клетки. Кариоплазма светлая, так как хроматин не образует крупных глыбок. Содержит 1-2 крупных ядрышка. Комплекс Гольджи расположен вокруг ядра. Много митохондрий, микротрубочек, есть центросома, лизосомы. Хорошо представлен аппарат синтеза белка: рибосомы и гранулярная цитоплазматическая сеть. Адсорбция основных красителей на скоплениях этих органелл образует характерную картину в виде крупных глыбок, напоминающую шкуру тигра (при изучении в световой микроскоп),

за что и названа тигроидным (базофильным) веществом или субстанцией Ниссля (по имени описавшего ее гистолога). Есть и специальные орга-неллы

Нейрофиламенты. Пучки нейрофиламентов и микротрубочек (нейротубул) благодаря адсорбции на них красителей видны в световой микроскоп в виде нейрофибрилл. Эти органеллы участвуют в формировании цитоокелета, в передвижении веществ по клетке и ее отросткам.

Вракин В.Ф, Сидорова М.В.

МОРФОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

Рис. 32. Схема строения нейрона:

А - на светооптическом и Б - на ультрамикроскопическом уровне:

1 - перикарион; 2 - ядро; 3 - ядрышко; 4 - дендриты; 5 - аксон; 6 - конечные разветвления аксона; 7- комплекс Гольджи; 8 - гранулярная эндоплазматическая сеть; 9 - митохондрии; 10 - нейрофибриллы.

Форма перикариона во многом определяется количеством отростков. Различают униполярные - с одним отростком, ложно-униполярные, биполярные - с двумя отростками и мультиполярные нейроны - с несколькими (3-20) отростками. Тела униполярных и ложноуниполярных клеток округлые, биполярных - веретеновидные, мультиполярных - разнообразные. Отростки - обязательная принадлежность нейронов. Без них нейроциты не могут выполнять свои функции, так как отростки обеспечивают проведение нервного импульса от одной части тела в другую. Их длина бывает от нескольких микрометров до 1-2 м. По морфологическим и функциональным свойствам отростки неравнозначны. В нейроне различают дендриты и аксон (нейрит). Аксон в клетке всегда один, дендритов может быть разное количество. По аксону возбуждение распространяется от тела, по дендриту- к телу нервной клетки. Дендриты, как правило, сильно ветвятся и в них присутствуют все органеллы, которые есть и в теле клетки. Аксон не ветвится, но может отдавать коллатерали - ответвления, идущие параллельно. В нем нет базофильного вещества. Нейрофиламенты и нейротрубочки располагаются упорядочение - вдоль аксона. Униполярными считаются недифференцированные нервные клетки на ранней стадии развития, когда дендриты еще не образовались. Среди дифференцированных клеток униполярные нейроны встречаются редко.

От тела ложноуниполярного нейрона отходит один отросток, который Т- образно разветвляется на дендрит и нейрит. Такие клетки распространены в спинномозговых узлах (ганглиях). Это чувствительные нейроны, дендриты которых идут на периферию, где заканчиваются в органах чувствительными нервными окончаниями (рецепторами), а нейриты несут возбуждение от тела клетки в центральную нервную систему. Как видим, эти клетки по своим

Вракин В.Ф, Сидорова М.В.

МОРФОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

структурно-функциональным свойствам приближаются к биполярным нейронам, которые встречаются в органе зрения, обоняния и среди ассоциативных нейронов. Самыми распространенными являются мультиполярные нейроны. Это все двигательные (моторные) и большинство ассоциативных нейронов. Среди их отростков только один аксон, а остальные дендриты. У ассоциативных нейронов аксон не покидает центральной нервной системы, у двигательных - идет на периферию -к органам (мышцам, железам), где и оканчивается двигательным нервным окончанием.

Нервные клетки рано дифференцируются в онтогенезе, утрачивают способность к делению, в норме продолжительность их жизни равна продолжительности жизни особи. Для поддержания жизнедеятельности и способности к выполнению функций на протяжении столь длительного времени в нейронах развита система внутриклеточной регенерации. При этом макромолекулы и их ансамбли постоянно разрушаются и создаются вновь. Белковые синтезы идут в основном в теле клетки. Высокий уровень жизнедеятельности отростков поддерживается постоянным таком цитоплазмы в отростки и обратно.

Плазмолемма нейрона выполняет все функции, присущие ей в любых клетках. Кроме того, она способна к возбуждению при деполяризации (снижении величины заряда) в результате перемещения ионов Na+ в клетку. Деполяризация возникает локально (в одном месте) и волнообразно перемещается от дендрита к телу и аксону. С какой скоростью движется волна деполяризации, с такой же скоростью передается и нервный импульс. Торможение наступает при противоположном явлении: увеличении заряда мембраны под влиянием ионных потоков (О- - в клетку и К+ - из клетки). В нервной ткани нейроны образуют ансамбли, характерные для определенных участков нервной системы. Характер их расположения носит название цитоархи-

тектоника.

Рис. 33. Синапс:

1 - пресинаптический полюс; 2 - синаптические пузырьки; 3- митохондрия; 4 - пресинаптическая мембрана; 5 - синаптипеская щель; 6 - постсинаптический полюс; 7- постсинаптическая мембрана.

Передача нервного импульса от одного нейрона к другому осуществляется в месте их контакта-синапсе (sinapsis - соединение) (рис. 33). В зависимости от того, какие участки нейронов вступают в контакт, различают аксодендритические (аксон одного нейрона контактирует с дендритом другого нейрона), аксосоматические (аксон контактирует с телом другого нейрона) и

Вракин В.Ф, Сидорова М.В.

МОРФОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

аксоаксо-нальные (контактируют аксоны двух нейронов) синапсы. Описаны также дендросоматические и дендродендритные синапсы. Примерно поло-

вина поверхности тела нейрона и почти вся поверхность его дендритов бывает занята синапсами.

В результате каждый нейрон имеет обширные контакты. Так, на одной грушевидной клетке мозжечка насчитывают до 200 000 синапсов. Синапсы бывают как возбудительные, так и тормозные.

У всех синапсов общие принципы строения: концевые веточки аксона, передающего импульс нейрона в месте синапса, образуют колбовидные утолщения - это пресинаптический полюс. В нем содержится много митохондрий и синаптических пузырьков, которые различаются по виду и размерам в зависимости от содержащегося в них медиатора - вещества, возбуждающего второй нейрон. Это могут быть серотонин, ацетилхоллин, адреналин и другие вещества. Участок второго нейрона, воспринимающий импульс, называется постсинаптическим полюсом. В нем нет синаптических пузырьков и митохондрий. Между двумя полюсами находится узкая синап-

тическая щель (около 20 им), ограниченная контактирующими мембранами двух полюсов: пресинаптической и постсинаптической. Эти мембраны имеют утолщения и другие специальные структурные приспособления, обеспечивающие успешную передачу нервного импульса только в одном направлении. Нервный импульс, пришедший в пресинаптический полюс, приводит к выбросу медиатора в синаптическую щель. Вызванный им нервныйим- пульс переходит на второй нейрон.

Нейроглия заполняет в нервной ткани все пространства между нейронами, их отростками, кровеносными капиллярами. Тесно прилегает к перечисленным структурам, образуя их оболочки. Она выполняет разнообразные функции: опорную, изолирующую, разграничительную, трофическую, защитную, обменную, гомеостатическую. Нейроглиальные клетки - глиоциты

Называют вспомогательными клетками нервной ткани, так как они не проводят нервный импульс. Тем не менее их функции жизненно необходимы, поскольку отсутствие или повреждение нейроглии делает невозможной работу нейронов. Существуют две разновидности нейроглии: макроглия и микроглия.

Макроглия (глиоциты), как и нейроны, развивается из клеток нервной трубки. Среди глиоцитов различают: эпендимоциты, астроциты, олигодендроциты.

Эпендимоциты - глиальные клетки кубической или цилиндрической формы, на их апикальном полюсе имеются реснички, от базального полюса отходит длинный отросток, который пронизывает всю толщу мозга. Они плотно прилегают друг к другу, выстилая сплошным слоем стенки желудочков мозга и спинномозгового канала. Движениями ресничек создается ток цереброспинальной жидкости. В некоторых эпендимоцитах обнаруживают секреторные гранулы. Предполагают, что эпендимоциты выделяют секрет в цереброспинальную жидкость и регулируют ее состав.

Вракин В.Ф, Сидорова М.В.

МОРФОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

Астроциты - основная разновидность глиоцитов центральной нервной системы. Это клетки с диаметром тела 10-25 мкм, с округлыми или овальными ядрами, с многочисленными, расходящимися в разные стороны отростками. Различают плазматические и волокнистые астроциты. Плазматические астроциты залегают в сером веществе мозга (то есть там, где находятся тела нейронов). У них светлая цитоплазма, короткие и толстые отростки, которые, прилегая к телам нейронов и сосудам, частично распластываются и принимают вид пластинок. Волокнистые астроциты залегают в белом веществе мозга, то есть там, где находятся нервные волокна. У этих клеток цитоплазма темнее, более длинные, тонкие и слабоветвящиеся отростки по сравнению с плазматическими астроцитами. Они также образуют расширения в виде пластинок на стенках сосудов и нервных волокон, отграничивая их друг от друга и в то же время удерживая в определенном положении. Оба вида астроцитов выполняют опорную и разграничительную функции. Есть данные, что они участвуют в водном обмене и транспорте веществ из капилляров к нейронам.

Олигодендроциты - многочисленная и довольно разнообразная группа глиоцитов. Это мелкие клетки угловатой или овальной формы с небольшим количеством коротких тонких отростков. Они окружают тела и отростки нейронов, сопровождая их вплоть до нервных окончаний. Функции их разнообразны. Они участвуют в образовании оболочек вокруг дендритов и аксонов, в питании нейронов. При сильном возбуждении передают часть своей РНК в тело нейрона. Способны накапливать в себе большое количество жидкости и других веществ, поддерживая гомеостаз нервной ткани. Следовательно, олигодендроциты выполняют разграничительную, трофическую и гомеостатическую функции.

Микроглия (глиальные макрофаги)-мелкие клетки, происходящие из мезенхимы, а затем из клеток крови, по-видимому, путем трансформации моноцитов. Количество их невелико- около 5% глиальных клеток. В спокойном состоянии у них удлиненное тело и небольшое число ветвящихся отростков. При возбуждении отростки втягиваются, клетки округляются, увеличиваются в объеме, приобретают подвижность и способность к фагоцитозу.

Нервные волокна - отростки нервных клеток (аксоны и дендриты), покрытые оболочками из глиоцитов. В головном и спинном мозге оболочку волокон образуют олигодендроциты, в остальных частях- их разновидность, называемая леммоцитами (шванновскими клетками).

В зависимости от особенностей строения различают миелиновые и безмиелиновые нервные волокна. Безмиелиновые волокна распространены в вегетативной нервной системе и в сером веществе мозга, миелиновые - в периферической (соматической) нервной системе и в белом веществе. При образовании волокна клетки олигодендроглии располагаются вдоль отростка нейрона, плотно прилегая как к отростку, так и друг к другу. Отросток нервной клетки, входящий в состав волокна, называется осевым цилиндром.

Безмиелиновые нервные волокна. В случае образования безмиелинового нервного волокна отросток нейрона продавливает в месте прилегания к лем-

Вракин В.Ф, Сидорова М.В.

МОРФОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

моциту его оболочку в виде желобка. По мере опускания отростка желобок становится глубже, плазмолемма леммоцита одевает его со всех сторон в виде муфты. В конце концов осевой цилиндр, погруженный в леммоцит, как бы повисает в складке (мезаксоне) его плазмолеммы. Мезаксон и плазмолемму леммоцита, окружающую осевой цилиндр, видно только в электронный микроскоп. В безмие-линовых волокнах, как правило, проходит несколько осевых цилиндров (3-20). Они могут быть погружены в леммоцит на разную глубину и иметь разной длины мезаксон. Такие волокна называются волокнами кабельного типа. Толщина их 1-5 мкм. Ядра леммоцитов располагаются как сбоку, так и в центре волокна. Изоляция осевых цилиндров внутри волокон кабельного типа невелика, нервный импульс может распространяться диффузно - на все осевые цилиндры волокна. Осевые цилиндры переходят из одного безмиелинового волокна в другое, что также способствует распространению нервного импульса по волокнам. Скорость прохождения нервного импульса сравнительно невелика - 0,2- 2 м/с.

Рис. 34. Схема строения миелинового нервного волокна:

1 - осевой цилиндр; 2 - неврилемма:

3 - ядра и 4- отростки леммоцита;

5 - миелиновая оболочка; 6 - узловой перехват; 7- межузловой сегмент.

Миелиновые нервные волокна устроены сложнее (рис. 34). В центре каждого миелинового волокна проходит осевой цилиндр, одетый миелиновой оболочкой. Верхний слой волокна называется неврилеммой. Миелиновая оболочка и неврилемма- это составные части леммоцитов, окружающих осевой цилиндр. При образовании миелинового волокна леммоциты, прилегающие к отростку нейрона, уплощаются и накручиваются вокруг осевого цилиндра, обертывая его несколько раз. При этом из намотавшегося участка леммоцита цитоплазма выдавливается в свободные участки, а плазмолемма спадается, слипается и образует слой миелиновой оболочки. В процессе накручивания на осевой цилиндр леммоцит растет, все больше вытягивается, количество слоев миелина увеличивается. Оставшаяся ненамотанной часть клетки с ядром и цитоплазмой оказывается сверху. Это и будет неврилемма

Вракин В.Ф, Сидорова М.В.

МОРФОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

(невролемма). Леммоциты несравнимо меньше осевого цилиндра. Располагаются они В волокне поочередно, соединяясь друг с другом пальцеобразными выростами. В месте контакта соседних леммоцитов волокно резко истончается, так как миелиновая оболочка здесь отсутствует и волокно покрыто только неврилеммой - узловые перехваты. Участки волокна, покрытые миелиновой оболочкой, называются межузловыми сегментами.

Миелиновые волокна толще безмиелиновых. Их диаметр 7- 20 мкм. Нервный импульс по ним проходит гораздо быстрее (5-120 м/с). Чем толще волокно, тем быстрее идет по нему импульс. В ускорении прохождения нервного импульса большую роль играет миелиновая оболочка. В узловых перехватах плазмолемма (аксолемма) осевого цилиндра возбуждается, как и в безмиелиновых нервных волокнах, в результате деполяризации под влиянием ионных потоков. В области же межузловых сегментов миелиновая оболочка, действуя как изолятор, способствует молниеносному прохождению нервного импульса, подобно тому, как это происходит в электрическом проводнике. В результате нервный импульс как бы перескакивает от одного узлового перехвата до другого и таким образом движется с большой скоростью.

Безмиелиновые и миелиновые нервные волокна за пределами центральной нервной системы одеты базальной мембраной, подобной базальной мембране эпителия. В нервной ткани нервные волокна образуют ансамбли, характерные для того или иного участка нервной системы. Характер расположения нервных волокон называется миелоархитектоникой. В центральной нервной системе волокна образуют проводящие пути, на периферии - нерв-

ные стволы или нервы.

Нерв. Нервные волокна, объединенные соединительной тканью, образуют нерв, а тончайшие прослойки соединительной ткани, расположенные между нервными волокнами, - эндоневрий. Он тесно связан с базальными мембранами волокон, в нем залегают капилляры. Эндоневрий связывает нервные волокна в пучок. Пучки нервных волокон одеты периневрием - более широкими прослойками соединительной ткани с упорядоченным расположением волокон и с проходящими в ней сосудами. Снаружи нерв покрыт эпиневрием - волокнистой соединительной тканью, богатой фибробластами, макрофагами, жировыми клетками. В нем разветвляются кровеносные и лимфатические сосуды и нервы нервов.

В состав нервов входят как миелиновые, так и безмиелиновые волокна. Бывают нервы чувствительные, образованные дендритами чувствительных нейронов (чувствительные черепномозговые нервы), двигательные - образованные аксонами моторных нейронов (двигательные черепномозговые нервы) и смешанные - в состав которых входят отростки различных по функции и структуре нейронов (спинномозговые нервы). Размеры нервов и их состав зависят во многом от размеров и функциональной активности органов, иннервируемых ими. Замечено, что нервы мышц динамического типа

с активной двигательной функцией состоят из толстых миелиновых волокон

с небольшим количеством безмиелиновых. Так же устроены вентральные ветви спинномозговых нервов. В дорсальных ветвях спинномозговых нервов

Вракин В.Ф, Сидорова М.В.

МОРФОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

и в нервах, иннервирующих динамостатические мышцы, более тонкие миелиновые и больше безмиелиновых волокон.

Рис. 35. Типы нервных окончаний:

I - чувствительные нервные окончания - неинкапсулированные: А - в эпителии роговицы; Б- в эпителии пятачка свиньи; В - в перикарде лошади; инкапсулированные: Г- фатерпачиниево тельце; Д - тельце Мейснера; Е - тельце из соска овцы; 11 - двигательные нервные окончания; Ж -в поперечнополосатом волокне; 3 -в гладкой мышечной клетке; 1 - эпителий; 2 - соединительная ткань; 3 - нервные окончания: 4 - меркелевская клетка; 5 - дискоидальное концевое расширение нервного окончания; 6 - нервное волокно; 7 - разветвление осевого цилиндра; 8 - капсула; 9 - ядро леммоцита; 10 - мышечное волокно.

Нервные окончания (рис. 35). Нервное окончание - место контакта отростка нервной клетки с различными структурами не нервной природы. Это могут быть мышечные волокна, клетки железистого или покровного эпителия и др. В зависимости от функциональной направленности различают чувствительные (рецепторные, афферентные) и двигательные (эффекторные, эфферентные) нервные окончания.

Чувствительные нервные окончания - рецепторы образованы конечными разветвлениями дендритов чувствительных нейронов и воспринимают раздражения, идущие к ним от разных участков организма или извне. Они рассеяны по всему организму. В зависимости от того, откуда рецепторы получают раздражение, их делят на экстерорецепторы, воспринимающие раздражения из внешней среды, проприорецепторы, несущие возбуждения от органов движения, и интерорецепторы, воспринимающие раздражения от внутренних органов.

Рецепторы чувствительны лишь к определенному виду раздражителей. В связи с этим различают механо-, термо-, фото-, баро-, хемо- и другие рецепторы. Наиболее распространенные механорецепторы. Они присутствуют в коже, мышцах, внутренних органах. Болевые ощущения воспринимаются как болевыми рецепторами, так, по-видимому, и любыми другими рецепто-

Вракин В.Ф, Сидорова М.В.

МОРФОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

рами при их чрезмерном раздражении. По структуре рецепторы делят на свободные и несвободные. Несвободные рецепторы, в свою очередь, бывают инкапсулированные и неинкапсулированные.

Свободные нервные окончания образованы только конечными разветвлениями дендритов, которые ничем не покрыты, и в виде кустиков, клубочков, петелек, колечек располагаются между клетками иннервируемой ткани. Чаще всего свободные нервные окончания встречаются в эпителии и соединительной ткани. Их много в эпидермисе носового зеркала у овец и лошадей, носогубного зеркала у коровы, вокруг волосяных фолликулов. Они обладают разнообразной чувствительностью.

Несвободные нервные окончания представляют собой конечные разветвления дендрита, окруженные специальными рецепторными клетками. Неинкапсулированные нервные окончания - это такая разновидность несвободных рецепторов, в которой разветвления осевого цилиндра (дендрита) окружены эпителиальными или глиальными клетками. Подобные нервные окончания хорошо развиты в пятачке свиньи. Это осязательные мениски (диски Меркеля), в которых конечные разветвления дендрита оплетают особые клетки в многослойном эпителии, чувствительные к прикосновению и давлению.

Инкапсулированные нервные окончания устроены наиболее сложно. В

них осевой цилиндр окружен не только клетками глии, но и соединительнотканной капсулой. Существует много разновидностей инкапсулированных нервных окончаний: осязательные тельца (Мейснера)-тактильные рецепторы, пластинчатые тельца (Фатера - Пачини)-барорецепторы, луковицеобразные тельца (Гольджи - Маццони), генитальные тельца (Догеля), концевые колбы (Краузе)-терморецепторы, нервно-мышечные веретена и др. Лучше других изучено пластинчатое тельце (Фатера - Пачини) и нервномышечное веретено.

В пластинчатом тельце конечные разветвления дендрита (телодендрии) окружены глиальными клетками, которые, распластываясь и плотно наслаиваясь друг на друга, образуют внутреннюю колбу (луковицу). Внутренняя колба покрыта слоями распластанных фибробластоподобных клеток, в совокупности формирующих наружную капсулу тельца. Между внутренней колбой и наружной капсулой и около нервного окончания имеется пространство, в котором обнаруживаются чувствительные отростчатые (ресничные) клетки. Пластинчатые тельца реагируют на любые изменения давления в тканях (давление жидкостей, при опоре, нажатии, ударе и т. д.), кодируя при этом направление, частоту раздражающего стимула и вид его энергии. Они очень распространены в организме - залегают в соединительной ткани органов опорно-двигательного аппарата, внутренних органов, кровеносных сосудов, нервных стволов, встречаются в лимфатических узлах, вегетативных ганглиях, эндокринных железах. Количество и размеры их колеблются в зависимости от возраста, места расположения и частоты возбуждения (0,1-6 мм).

Вракин В.Ф, Сидорова М.В.

МОРФОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

Другие инкапсулированные рецепторы построены по такому же принципу, различаясь характером ветвления осевого цилиндра, количеством и расположением пластинок во внутренней колбе и капсуле. Особенности строения определяют характер чувствительности того или иного нервного окончания. В поперечнополосатой мышечной ткани разветвления осевого цилиндра оплетают сверху группу видоизмененных мышечных волокон, образуя подобие веретена. Сверху нервно-мышечное веретено покрыто соединительнотканной капсулой.

Двигательные нервные окончания - эффекторы в гладкой мышечной ткани и железах обычно построены по типу свободных нервных окончаний. В поперечнополосатой мышечной ткани они имеют сложное строение и на-

зываются нервно-мышечными синапсами, или моторными бляшками. Подой-

дя к мышечному волокну, нервное волокно видоизменяется. Его осевой цилиндр, являющийся аксоном моторного нейрона, разветвляется на терминали, которые вдавливаются в мышечное волокно и образуют с его плазмолеммой контакт, подобный синапсу. Плазмолемма аксона в месте контакта - это пресинаптическая мембрана нервно-мышечного синапса, плазмолемма мышечного волокна - постсинаптическая. Между ними находится синоптическая щель шириной около 50 нм. Базальные мембраны нервного и мышечного волокна соединяются, переходя одна в другую и покрывают сверху моторную бляшку. Плазмолемма мышечного волокна в месте контакта образует многочисленные складки. Предполагают, что с их развитием связана скорость сокращения мышцы. Один двигательный нейрон (и его аксон) вместе с иннервнруемыми им мышечными волокнами создает двигательную единицу - мион. Сила сокращения мышцы зависит от того, сколько двигательных единиц участвует в сокращении.

Рис. 36. Рефлекторная дуга:

1-спинной мозг; 2 - дорсальный и 3 - вентральный рог серого вещества; 4- спинномозговой ганглий; 5 - чувствительный и 6 - двигательный корешки спинномозгового нерва; 7 - смешанный спинномозговой нерв; 8 - кожа; 9 - мышца; 10 - чувствительное нервное окончание: 11-дендрит; 12 - тело и 13- аксон чувствительного нейрона; 14 - вставочный нейрон и его (15) аксон; 16 - двигательный нейрон и его (17) аксон; 18 - двигательное нервное окончание.

В нее входят от 3 до 2000 мышечных волокон. Мышечные волокна, относящиеся к одной двигательной единице, распределены по всей мышце. В результате при возбуждении небольшого числа нейронов сокращается вся мышца, а не какая-то ее часть.

Вракин В.Ф, Сидорова М.В.

МОРФОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

Рефлекторная дуга (рис. 36). Возбуждение в нервной ткани и в нервной системе распространяется не хаотично, а по определенным путям - рефлекторным дугам. Рефлекторная дуга образована чувствительным, одним или несколькими ассоциативными и двигательными нейронами. Возбуждение в рефлекторной дуге идет всегда в строго определенном направлении: от рецептора (чувствительного нервного окончания) по центростремительному отростку чувствительного нейрона (обычно дендриту) к его телу, расположенному в ганглии (нервном узле), откуда по его центробежному отростку (аксону) - к дендриту ассоциативного нейрона. Между аксоном чувствительного нейрона и дендритом ассоциативного нейрона образуется синапс, пропускающий нервный импульс только в одном направлении: от пресинаптического полюса к постсинаптическому. Нервный импульс последовательно переходит на дендрит, тело и аксон ассоциативного нейрона, а оттуда

Через синаптическую связь на дендрит, тело и аксон моторного нейрона. Ассоциативные нейроны с отростками, дендриты и тела моторных нейронов располагаются в центральной нервной системе. Аксоны же моторных нейронов покидают ее и направляются к иннервируемым тканям и органам, где их конечные разветвления формируют двигательные нервные окончания - эффекторы. Раздражение рецептора (например, надавливание на кожу возбуждает пластинчатые

тельца) приводит к волне возбуждения, которая проходит путь по рефлекторной дуге и, дойдя до эффектора, организует ответное действие, названное рефлексом. (В нашем примере-сокращение мышц в ответ на надавливание и как следствие этого - движение.)

Возрастные и реактивные изменения в нервной ткани. У ново-

рожденных животных структурные элементы нервной ткани дифференцированы в такой степени, что могут выполнять все функции, присущие нервной системе (особенно у зрелорождающихся копытных): рецепцию, интеграцию рецепторного сигнала, передачу нервного импульса, секрецию медиатора в синаптическую щель и организацию эффекторной реакции. Тем не менее и в постнатальный период онтогенеза идет увеличение размеров и усложнение структуры нейронов, что, видимо, связано со спецификой их функционирования. Пропорционально увеличиваются размеры тел и ядер нейронов, накапливается базофильное вещество. У овец прослежено увеличение его количества до 3-летнего возраста, а с 5-6 лет - возрастное снижение. Утолщаются миелиновая оболочка и размеры леммоцитов, образующих эту оболочку.

Вопросы для самоконтроля. 1. Каково происхождение и принципы строения нервной ткани? 2. Что такое нейрон, какие бывают нейроны по структуре и функции? 3. Что такое синапс, его виды и строение? 4. Какие клетки нейроглии вы знаете, чем они отличаются друг от друга? 5. Что такое нервное волокно, как оно устроено, чем отличаются и где встречаются миелиновые и безмиелиновые волокна? 6. Что такое нервное окончание? 7. Классификация и строение нервных окончаний. 8. Состав рефлекторной дуги.

Вракин В.Ф, Сидорова М.В.

МОРФОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

Раздел четвертый. МОРФОЛОГИЯ ОРГАНОВ И ИХ СИСТЕМ

Глава 11. ОБЩИЕ ПРИНЦИПЫ ПОСТРОЕНИЯ И РАЗВИТИЯ ОРГАНИЗМА

Современная морфология, стоящая на позициях диалектического материализма, рассматривает организм - объект своего изучения - как единое целое, все части которого взаимосвязаны, взаимообусловлены и взаимозависимы. Кроме того, организм рассматривается не в статике, а в процессе его роста и развития (в онтогенезе), в свете эволюционных преобразований (в филогенезе), в зависимости от условий жизни и влияния функций.

Такой всеобъемлющий подход к (Изучению организма с помощью целого ряда наук и направлений, входящих как составные части в морфологию, дал основание В. А. Домбровскому (1946) определить ее как интегральную морфологию. Следовательно, организм - это живая, целостная, существующая самостоятельно, исторически сложившаяся система, имеющая свое особое строение и развитие, обусловленное наследственными свойствами, взаимодействием его частей и влиянием среды. Состоит организм из органов, объединенных в системы и аппараты, которые обеспечивают все проявления его жизни: реактивность, обмен веществ, размножение, рост и развитие.

Орган (organon - орудие) - часть организма, построенная из закономерно взаимосвязанных тканей; имеет определенную форму, занимает определенное положение в организме и выполняет специфическую функцию. Органы единого происхождения, сходного строения, как правило, морфологически тесно связаны и взаимозависимы, выполняют общую функцию, составляют систему органов, например нервная, сосудистая, костная, мышечная и другие системы. Органы, обеспечивающие определенный жизненный процесс, но имеющие разное строение и происхождение, объединяются в аппарат. Например, аппарат движения, пищеварения, дыхания, крово-, лимфообразования и др. Системы органов могут входить в аппараты как их составная часть.

Системы органов и аппараты в зависимости от их морфофункциональных особенностей делят на три группы: соматическую, висцеральную и интегрирующую. В соматическую группу входят скелет, мускулатура (объединяемые в аппарат движения) и органы кожного покрова. Они образуют сому - стенки тела. В висцеральную (спланхническую) группу вхо-

дят пищеварительный, дыхательный и мочеполовой аппараты. В совокупности они составляют внутренности (греч. splanchna, лат. viscera), расположенные большей частью в естественных полостях тела. В группу интегрирующих систем входят эндокринная, сердечно-сосудистая и нервная системы с органами чувств. Сердечно-сосудистая система пронизывает все органы и ткани организма (за редким исключением), выполняет транспортную функцию и объединяет все системы. Через нее осуществляется гуморальная регуляция. Нервная система регулирует и координирует деятельность всех систем, в том числе и сосудистой, обеспечивая гармоничную целостность орга-

Вракин В.Ф, Сидорова М.В.

МОРФОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

низма и адекватную связь его с окружающей средой с помощью органов чувств.

Для всех хордовых характерны единые принципы построения тела: а) биполярность (одноосность)-тело имеет два полюса - головной (краниальный) и хвостовой (каудальный); б) билатеральность - двусторонняя симметрия - правая и левая стороны тела являются зеркальным отражением друг друга; в) сегментность (метамерия) - близлежащие сегменты близки построению; г) четырехногость (тетраподия); д) расположение большинства непарных органов вдоль основной оси тела.

Направление сил тяжести четвероногого животного совпадает с анатомическими границами, разделяющими скелет на его естественные отделы: череп, шейный, грудной, поясничный, крестцовый и хвостовой, а на конечностях проходит через отделы конечностей (пояс, стилоподий, зейгоподий, автоподий). Общий центр тяжести проходит через печень, что у рогатого скота соответствует уровню 11-го грудного позвонка.

Взаимосвязь организма со средой. Организм не может существовать в отрыве от окружающей среды, так как постоянно обменивается с ней веществом и энергией. На изменения внешней среды организм отвечает приспособительными реакциями. Однако они небезграничны и всегда находятся в пределах нормы данной реакции.

Норма реакции - это пределы способности организма реагировать изменением своих морфологических и физиологических свойств на изменения среды обитания без нарушения основных морфофункциональных систем.

Нормой строения считается наиболее часто встречающийся вариант строения организма. Для животных разных видов, пола, возраста, конституции характерны свои нормы строения, отличающие их от других групп (возрастных, половых и т. д.). Так, для молодняка копытных характерна относительная высоконогость, а для взрослых - растянутость тела. Норма строения закреплена в генотипе более жестко, чем норма физиологическая. Следовательно, структурные изменения под влиянием среды будут менее выражены, чем функциональные. Но и структуры в разной степени генетически обусловлены. Так, размеры головы, длина трубчатых костей, форма мышц в большей степени определяется генотипом, чем, например, размеры поясницы, толщина трубчатых костей, масса мышц. Индивидуальная изменчивость организма и органов, если она не нарушает их жизнедеятельности, находится в пределах нормы реакции и строения. Если изменения среды превышают адаптивные возможности организма, развивается патология, которая выражается в болезнях, уродствах, преждевременной смерти и т. д.

Онтогенез как диалектический процесс. Организм в течение всего периода своего существования закономерно изменяется. Процесс индивидуального развития - онтогенез - начинается с появления зиготы и кончается со смертью организма. Развитие организма является диалектическим процессом, то есть таким процессом, в котором взаимосвязаны и взаимозависимы противоречивые явления. Противоречивость внутренне присуща онтогенезу- это его движущая сила. Так, противоречие наследственности и изменчивости оп-

Вракин В.Ф, Сидорова М.В.

МОРФОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

ределяет весь ход индивидуального развития; ассимиляция (анаболизм) и диссимиляция (катаболизм) неразрывно связаны в ходе обмена веществ (энергия, освобождающаяся при катаболизме, тратится в процессе анаболического синтеза); взаимодействие между отмирающими и нарождающимися структурами, между прогрессивными и регрессивными процессами наблюдается на всех стадиях развития (появление дочерних клеток на базе материнской, образование кости на месте резорбирующегося хряща и т. д.).

Развитие особи - это отражение развития вида, что было сформулировано Э. Геккелем в виде биогенетического закона, который гласит, что онтогенез повторяет филогенез. Ч. Дарвин в 1842 г. писал, что зародыш является как бы свидетелем прошлых столетий, через которые прошел вид. А. Н. Северцов дополнил и расширил это положение, показав, что онтогенез не только результат, но и основа филогенеза, так как филогенез - это ряд онтогенезов и изменения, происходящие в генотипе особи, передаваясь потомству, влияют на направление филогенеза. Изменения же в процессе развития особи, происходящие под влиянием окружающей среды, считаются приспособительными. Выраженность изменений зависит от индивидуальных реакций организма, и тогда начинает действовать естественный отбор, сохраняя особей, изменения которых оказались наиболее адаптивными, повысили их жизнеспособность, способствовали активному размножению и т. д. Чем шире норма реакции и структуры, чем шире гено- и фенотипическая изменчивость, тем больше возможности морфофункционального приспособления, а следовательно, процветания и эволюции вида. Наглядно влияние внешней среды на морфофункциональную организацию животного видно в процессе одомашнивания: у рыжих лис уже через несколько поколений появляются полиэстричность, пестрота окраски шерсти, меняется поведение, появляется способность махать хвостом; у овец меняются длина и структура желудочнокишечного тракта, качество шерсти.

Онтогенез осуществляется по определенному плану: у свиньи рождаются поросята, из которых вырастают свиньи, а не, скажем, короЕЫ. Закономерность и направленность онтогенеза определяются генетической программой, взаимовлиянием частей организма в процессе развития и функционирования, а полнота ее реализации зависит от влияния внешней среды и проявляется в фенотипе.

Взаимовлияние частей организма совершается путем регуляции и происходит на всех уровнях - от молекулярного до системоорганного. Регуляторные процессы всегда основываются на принципе отрицательной обратной связи и являются саморегулирующимися: регулируемый орган накоплением продуктов своей деятельности подавляет активность регулятора. На уровне клетки регуляция осуществляется через клеточный метаболизм и межклеточные взаимодействия. На органном и организменном уровне - с помощью эндокринной и нервной систем.

Вракин В.Ф, Сидорова М.В.

МОРФОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

Рост и дифференцировка - две стороны единого процесса развития. Индивидуальное развитие (онтогенез) включает в себя качественную (дифференцировка) и количественную (рост) стороны.

Дифференцировка, или дифференциация, - возникновение в процессе развития организма биохимических, морфологических и функциональных различий между клетками, тканями и органами. В результате происходит расчленение целого на части, образуются и приобретают специализацию различные клетки, ткани, органы. В онтогенезе многоклеточных животных специализация возникает на стадии нескольких бластомеров. В процессе дифференцировки органеллы, клетки, ткани, органы приобретают специфические черты строения и присущую им функцию. При этом оказывается, чем более специализирована часть организма, тем больше она зависит от других частей.

Р о с т - увеличение массы и размеров тела и его частей, органически связанное с формативными процессами. В биологии до настоящего времени нет единой теории роста, хотя сам процесс хорошо изучен у животных различных видов, классов, типов. Рост - это количественный показатель изменения структур, поэтому его легче, чем другие характеристики онтогенеза, выразить в математической форме. Характер роста у животных разных видов и даже у одного животного на разных стадиях онтогенеза неодинаков.

Подавляющее большинство теплокровных животных (кроме крыс), достигнув определенных размеров, прекращают расти. Такой рост называется ограниченным. Для большинства хладнокровных хордовых животных (в том числе рыб) характерен неограниченный рост. Эти животные растут в течение всей жизни.

Рост и дифференцировка связаны между собой обратной зависимостью: чем более дифференцирован организм, тем меньше скорость его роста. Наибольшая скорость роста наблюдается у зародыша, меньше у плода, еще меньше - после рождения, а с достижением физиологической и морфологической зрелости рост прекращается. Следовательно, в онтогенезе происходит постоянное убывание скорости роста. Однако убывание это неравномерно, так как периоды активного роста и дифференцировки чередуются, в результате чего рост носит характер угасающих колебаний, а дифференцировка также ступенчато возрастает до периода морфофункциональной зрелости.

У разных животных скорость и продолжительность роста неодинаковы, причем между этими показателями роста имеется обратная зависимость: чем быстрее скорость роста, тем короче его продолжительность, и наоборот. Особенно высокая скорость роста и короткая его продолжительность у птиц. У млекопитающих отмечена связь между размерами животного, скоростью и продолжительностью роста. Виды мелких животных растут обычно интенсивно, но непродолжительно, виды крупных животных менее интенсивно, но длительно. Масса тела, которой достигает тот или иной вид не случайна, а определяется взаимоотношением между поверхностью тела, его объемом, поверхностью слизистой оболочки кишечника и интенсивностью обменных процессов. Эти взаимоотношения накладывают строгие пределы на размеры животного. Если во время роста тело не меняет форму, такой рост называется

Вракин В.Ф, Сидорова М.В.

МОРФОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

пропорциональным. Он характерен лишь для самых ранних стадий дробления зародыша и в период, близкий к завершению роста (от периода полового созревания до морфофизиологической зрелости). Для всех остальных периодов характерен непропорциональный рост, когда одни органы растут быстрее, чем другие. При этом меняются пропорции тела, соотношения тканей в органах.

Неравномерность роста определяется сроком закладки органов (одни органы закладываются рано, например глаза, мозг, другие гораздо позже - кишечник, мышцы), величиной закладки (у глаз, мозга - большая, у легких, мышц - сравнительно меньшая), сроками и длительностью гистологической дифференцировки. Если у органа большая величина закладки и эта закладка формируется рано, для такого органа характерен медленный темп эмбрионального и постнатального роста (глаз, мозг). К тому же такие органы генетически высокодетерминированы, то есть их морфологическое развитие определяется в основном генотипом. Если закладка органа формируется поздно, но ее гистологическая дифференцировка идет быстро, для такого органа характерен быстрый эмбриональный и короткий постнатальный рост (например, печень). Если закладка органа формируется поздно, а гистологическая дифференцировка у нее медленная, для такого органа характерен быстрый эмбриональный и долгий постнатальный рост (аппарат движения, размножения). При этом чем позже закладывается орган, тем развитие его больше зависит от условий среды. А так как кости, мышцы и кожа являются одним из наиболее поздно дифференцирующихся органов, это дает в руки зооинженера ключ к управлению процессами формирования мясной и шерстной продуктивности.

Периодизация развития. В процессе индивидуального развития выделяют определенные этапы, когда в результате нарастающих количественных изменений организм переходит в новое качественное состояние. Периоды внутриутробного развития прослежены нами в разделе «Эмбриология». В постнатальном онтогенезе выделяют периоды новорожденность, молочный, роста и развития молодняка, полового созревания, морфофизиологической зрелости, расцвета функциональной деятельности (взрослого состояния), старения. В процессе индивидуального развития есть критические периоды, когда те или иные органы наиболее чувствительны к внешнему воздействию. Оказалось, что критическим периодом для органа является время наиболее интенсивного его роста, а также моменты периодических (ритмичных) повышений скорости роста на протяжении онтогенеза. В ритмичности проявляется неравномерный характер роста. Давно известны годичные ритмы, связанные со сменой времен года. У диких животных, а из домашних у северного оленя, верблюда рост приостанавливается зимой и возобновляется в теплое время года. Обнаружены околомесячные, околосуточные и околочасовые ритмы у всех млекопитающих, а также 12-дневные циклы активности и затухания роста у телят и цыплят. Применение дифференцированного кормления в соответствии с обнаруженными ритмами позволило увеличить продуктивность на 20-30% при 20% экономии кормов. Знание закономерностей роста

Вракин В.Ф, Сидорова М.В.

МОРФОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

и использование их в практике животноводства позволяют управлять не только процессами роста животного, но и его развития в целом, что является одним из резервов интенсификации животноводства.

ПЛОСКОСТИ ТЕЛА И ТЕРМИНЫ ДЛЯ ОБОЗНАЧЕНИЯ РАСПОЛОЖЕНИЯ ОРГАНА

Для более точного определения расположения органов и частей тело животного расчленяют тремя воображаемыми взаимоперпендикулярными плоскостями - сагиттальной, сегментальной и фронтальной (рис. 37). Срединная сагиттальная (медианная) плоскость проводится вертикально вдоль середины тела животного от рта до кончика хвоста и рассекающая его на две симметричные половины. Направление в теле животного к срединной плоскости называется медиальным, а от нее - латеральным (lateralis - боковой).

Рис. 37. Плоскости и направления в теле животного.

Плоскости: I - сегментальная; II - сагиттальная; III - фронтальная. Направления: 1 - краниальное; 2 - каудальное; 3 - дорсальное; 4 - вентральное; 5 - медиальное; 6 - латеральное; 7 - ростральное (оральное); 8

Аборальное; 9 - проксимальное; 10 - дистальное; 11 - дорсальное (спинковое, тыльное); 12 - пальмарное; 13 - плантарное.

Вракин В.Ф, Сидорова М.В.

МОРФОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

Сегментальную плоскость проводят вертикально поперек тела животного. Направление от нее в сторону головы называется краниальным (cranium

Череп), в сторону хвоста - каудальным (cauda - хвост). На голове, где все краниальное, раз дичают направление к носу - назальное или хоботку-

ростральное и противоположное ему - каудальное. Фронтальную плос-

кость (Irons - лоб) проводят горизонтально вдоль тела животного (при горизонтально вытянутой голове), то есть параллельно лбу. Направление в данной плоскости в сторону спины называется дорсальным (dorsum - спина), к животу - вентральным (venter - живот).

Для определения положения участков конечностей существуют термины проксимальный (proximus - ближайший) - более близкое положение к осевой части тела и дистальный (distalus - удаленный) - более отдаленное положение от осевой части тела. Для обозначения передней поверхности конечностей приняты термины краниальный или дорсальный (для лапы), а для задней поверхности - каудальный, а также пальмарный или волярный

(palma, vola - ладонь) -для кисти и плантарный (planta - стопа) - для стопы.

ОТДЕЛЫ И ОБЛАСТИ ТЕЛА ЖИВОТНОГО И ИХ КОСТНАЯ ОСНОВА

Тело позвоночных животных делят на осевую часть и конечности. У рыб осевая часть состоит из головы, туловища и хвоста. Начиная с амфибий, у животных осевую часть тела делят на голову, шею, туловище и хвост. Шея, туловище и хвост в совокупности составляют ствол тела. Каждая из частей тела, в свою очередь, разделена на отделы и области (рис. 38). Основой их в большинстве случаев являются кости скелета, имеющие те же названия, что и области.

Голова (лат. caput, греч. cephale) делится на череп (мозговой отдел) и лицо (лицевой отдел).

Череп (cranium) представлен областями: затылочной (затылок), теменной (темя), лобной (лоб) с областью рога у рогатого скота, височной (висок) и околоушной (ухо) с областью ушной раковины.

На лице (fades) различают области: глазничную, (глаза) с областями верхнего и нижнего век, подглазничную, скуловую с областью большой жевательной мышцы (у лошади - ганаши), межчелюстную, подбородочную, носовую (нос) с областью ноздрей, ротовую (рот), в состав которой входят области верхней и нижней губ и щеки. Над верхней губой (в области ноздрей) находится носовое зеркальце, у крупных жвачных оно распространяется на область верхней губы и становится носогубным.

Шея (cervix, collum) простирается от затылочной области до лопатки и делится на области: верхнюю шейную, лежащую над телами шейных позвонков; боковую шейную (область плечеголовной мышцы), идущую вдоль тел позвонков; нижнюю шейную, вдоль которой тянется яремный желоб, а также

Вракин В.Ф, Сидорова М.В.

МОРФОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

гортанную и трахейную (на вентральной ее стороне). У копытных шея сравнительно длинная в связи с необходимостью питания подножным кормом. Поэтому же у них существует прямая корреляция между длиной конечностей и длиной шеи. Самая длинная шея у высоконогих быстроаллюрных лошадей. Самая короткая - у свиньи. Форма шеи у травоядных овальная, вытянутая в дорсовентральном направлении, у свиньи (всеядное) более округлая.

Рис. 38. Области тела крупного рогатого скота:

1 - лобная; 2 - затылочная; 3 - теменная; 4 - височная; 5 - околоушная; 6 - ушной раковины; 7 - носовая; 8 - области верхней и нижней губ; 9 - подбородочная; 10 - щечная; 11 - межчелюстная; 12 - подглазничная; 13 - скуловая; 14 - область глаза; 15 - большой жевательной мышцы; 16 - верхняя шейная; 17 - боковая шейная; 18 - нижняя шейная; 19 - холки; 20 - спины; 21 - реберная; 22 - предгрудинная; 23 - грудинная; 24 - поясничная; 25 - подреберья; 26 - мечевидного хряща; 27 - околопоясничтая (голодная) ямка; 28 - боковая область; 29 - паховая; 30 - пупочная; 31 - лонная; 32 - маклок; 33- крестцовая; 34 - ягодичная; 35

- корень хвоста; 36 - седалищная область; 37 - лопатка; 38 - плечо; 39

- предплечье; 40 - кисть; 41 - запястье; 42 - пясть; 43 - пальцы; 44 - бедро; 45 - голень; 46 - стопа; 47 - заплюсна; 48 - плюсна.

Туловище (truncus) состоит из грудного, брюшного и тазового отделов. Грудной отдел включает области холки, спины, боковые реберные, предгрудинную и грудинную. Он прочный и одновременно подвижный. В каудальном направлении прочность уменьшается, а подвижность нарастает благодаря разной степени развития костей скелета и особенностям их соединения. Костной основой холки и спины являются грудные позвонки. В облас-

Вракин В.Ф, Сидорова М.В.

МОРФОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

ти холки у них наиболее высокие остистые отростки. Чем выше и длиннее холка, тем больше площадь прикрепления мышц позвоночника и пояса грудной конечности, тем размашистее и более упруги движения. Между длиной холки и спины существует обратная зависимость. Самая длинная холка и короткая спина у лошади, у свиньи - наоборот.

Брюшной отдел включает поясницу (lumbus) и живот (abdomen), или брюхо (venter), поэтому еще называется пояснично-брюшным отделом. Поясница - продолжение спины до крестцовой области. Ее основой являются поясничные позвонки. Живот имеет мягкие стенки и делится на ряд областей: правого и левого подреберий, мечевидного хряща, верхняя граница которой проходит по реберной дуге; парную боковую (подвздошную) с голодной ямкой, примыкающую снизу к пояснице, спереди- к последнему ребру, а сзади - переходит в паховую область; пупочную, лежащую снизу живота позади области мечевидного хряща к впереди от лонной области. На вентральной поверхности областей мечевидного хряща, пупочной и лонной у самок расположены молочные железы. У лошади наиболее короткая поясница и менее обширный брюшной отдел. У свиньи и рогатого скота поясница более длинная. Наиболее объемистый брюшной отдел у жвачных.

Тазовый отдел (pelvis) делится на области: крестцовую, ягодичную, включая маклок, седалищную и промежностную с примыкающей мошоночной областью. В хвосте (cauda) различают корень, тело и кончик. Области крестцовая, две ягодичных и корень хвоста у лошади образуют круп.

Конечности (membra) подразделяются на грудные (передние) и тазовые (задние). Состоят они из поясов, которыми соединяются со стволовой частью тела, и свободных конечностей. Свободные конечности делятся на основной поддерживающий столб и лапу. Грудная конечность состоит из плечевого пояса, плеча, предплечья и кисти.

Области плечевого пояса и плеча примыкают к боковой грудной области. Костной основой плечевого пояса у копытных является лопатка, поэтому его часто называют областью лопатки.

Плечо (brachiuni) расположено ниже плечевого пояса, имеет форму треугольника. Костной основой является плечевая кость.

Предплечье (antebrachium) находится вне кожного туловищного мешка. Его костная основа - лучевая и локтевая кости.

Кисть (marius) состоит из запястья (carpus), пясти (metacarpus) и пальцев (digiti). Последние называются порядковыми номерами, счет их ведут с внутренней стороны. У животных разных видов их бывает от 1 до 5. Каждый палец (кроме первого) состоит из трех фаланг: проксимальной, средней и дистальной (которые у копытных называются соответственно путовой, у лошади

Бабка), венечной и копытцевой (у лошади - копытной).

Тазовая конечность состоит из тазового пояса, бедра, голени и стопы. Область тазового пояса (таз) входит в состав осевой части тела в каче-

стве ягодичной области. Костная основа - тазовая или безымянная кости.

Нервная ткань является основной тканью нервной системы и главные ее свойства – возбудимость и проводимость.

Нервная ткань состоит, в основном, из клеток. Ее клетки разделяют на 2 группы:

    нервные клетки (нейроны) – обеспечивают функции проведения и возбуждения;

    клетки нейроглии – обеспечивают вспомогательные функции (трофику, защиту и т.д.)

2. Эмбриогенез нервной ткани .

Эмбриональным источником ткани служит нейральный зачаток эктодермы, который образует нервную трубку. В составе трубки выделяют 3 слоя: внутренний (содержит камбиальные клетки и дает начало эпендимной глии); мантийный (плащевой) слой (сюда мигрируют клетки внутреннего слоя и дифференцируются в нейробласты и далее в нейроны и спонгиобласты, из которых образуется большинство клеток нейроглии; краевая вуаль (содержит отростки нижележащих клеток).

3. Морфо-функциональная характеристика нейрона.

Морфологический облик нейрона соответствует его функциям возбуждению и проведению нервного импульса, что обеспечивается механизмом деполяризации клеточных мембран. В основе этого явления лежит изменение разности потенциалов на внутренней и внешней поверхности мембран благодаря локальным токам Na + в цитоплазму иK + наружу через ионные каналы.

Клетка имеет тело или перикарион с крупным центрально расположенным ядром и отростки: дендриты (их может быть несколько и они проводят возбуждение к телу нейрона, получая его через многочисленные контакты с другими нейронами. В этих участках образуются особые выпячивания – дендритные шипики) и 1 аксон (проводит возбуждение от тела к следующему нейрону или рабочему органу). Есть все органеллы общего значения (даже клеточный центр). И есть специфические структуры. Базофильное вещество, скопления которого видны в перикарионе и в дендритах, но отсутствуют в аксоне. Это плотные скопления гранулярной ЭПС. А также нейрофибриллы, элементы цитоскелета, состоящие из промежуточных нейрофиламентов и микротрубочек. Они способствуют транспорту веществ внутри нейрона, что особенно актуально для отростков.

4. Синапсы и их классификация.

Для нейронов характерен особый вид межклеточных контактов – синапс. Наиболее характерен химический синапс между окончанием аксона и началом дендрита следующей клетки. Он состоит из: 1. пресинаптической части (аксона) 2. синаптической щели 3. постсинаптической мембраны (дендрита). Концевое расширение аксона содержит синаптические пузырьки с особым веществом – нейромедиатором, которое вырабатывается в теле нейрона и быстро транспортируется в аксонное расширение. Возбуждение первого нейрона приводит к быстрому поступлению кальция через персинаптическую щель в аксон, что инициирует экзоцитоза нейромедиатора в синаптическую щель. Постсинаптическая мембрана содержит рецепторы, связывающиеся с медиатором, что и вызывает ее деполяризацию и формирование нервного импульса, либо гиперполяризацию, обуславливая торможение. Возбуждающий медиатор – ацетилхолин, тормозной – глицин. Обратите внимание химические синапсы способны только к одностороннему проведению импульса.

В зависимости от положения синапсы могут быть аксо-дендритические, аксо-соматические и аксо-аксональные (тормозные).

5. Классификации нейронов .

Нейроны классифицируются морфологически: по числу отростков.

    Биохимически: по выделяемому медиатору (например, холинэргические)

    Функционально: чувствительные, двигательные, ассоциативные.

Эта классификация зависит от того, какое окончание имеет аксон либо дендрит данного нейрона, которое называется нервное окончание.

У чувствительных нейронов дендриты заканчиваются рецепторными нервными окончаниями, специализированными на восприятии внешних (экстерорецепторы) или внутренних раздражений (интерорецепторы).

6. Чувствительные нервные окончания.

Чувствительные нервные окончания подразделяются на: свободные и несвободные. Свободные – это просто ветвления дендрита в эпителии или соединительной ткани. Они воспринимают температуре, механические и болевые сигналы.

Несвободные окончания бывают неинкапсулированные и инкапсулированные. Первые представляют собой ветвления дендритов, окруженные особыми клетками нейроглии. Встречаются в дерме и слизистых оболочках. Несвободные инкапсулированные окончания снаружи покрыты еще и соединительно-тканной капсулой. К ним относится ряд механорецепторов, воспринимающих давление и вибрацию (пластинчатые тельца Фатер-Пачини, осязательные тельца Мейснера, тельца Руффини и т.п.), а также нервно-мышечные веретена – это рецепторы, которые располагаются внутри скелетных мышц и оценивают степень растяжения мышечных волокон. Веретена содержат интрафузальные волокна двух типов: волокна с ядерной сумкой и волокна с ядерной цепочкой. Чувствительные окончания дендритов образуют кольцеспиральные и гроздьевидные окончания на этих волокнах и реагируют на изменение их толщины. На этих волокнах есть и двигательные окончания аксонов, которые заставляют их сокращаться в момент сокращения всей мышцы.

7. Эфферентные нервные окончания.

Аксоны двигательных нейронов образуют эффекторные нервные окончания двух типов: секреторные (на клетках желез) и двигательные (в поперечно-полосатых и гладких мышцах). В скелетных мышцах это нейро-мышечный синапс или моторная бляшка. По строению как известный вам синапс, но постсинаптическая мембрана представлена участком плазмолеммы мышечного волокна. Один аксон, разветвляясь на конце, образует моторные бляшки сразу на целой группе мышечных волокон. В сердечной и гладкой мышечной тканях веточки аксонов образуют расширения – варикозы, в которых и находятся пузырьки с нейромедиатором. Как правило здесь иннервируются только некоторые клетки, а от них возбуждение передается на соседние с помощью нексусов.

Секреторные нервные окончания оканчиваются варикозными расширениями вблизи секреторных клеток и стимулируют синтез секретов либо процесс экзоцитоза.

8. Нейроглия.

Нейроглия – это группа вспомогательных клеток, которые обеспечивают деятельность нейронов. В ткани головного мозга их число в 5-10 раз больше, чем нейронов.

Выделяют микроглию и макроглию. Микроглия – это мелкие звездчатые клетки, которые образуются из моноцитов и являются специализированными макрофагами ЦНС. Они выполняют защитную, в том числе и антигенпредставляющую функцию. Выяснена ведущая роль этих клеток в поражении нервной системы при СПИДе. Они разносят вирус, а также инициируют усиленный апоптоз нейронов.

9. Характеристика и классификация макроглии.

Макроглия включает разные клетки, относящиеся к трем разновидностям: астроглия, олигодендроглия и эпендимная глия. Клетки эпендимной глии (эпендимоциты) Эпендимоциты.

Образуют выстилку полостей желудочков головного мозга и центрального канала спинного мозга. Они образуют пласт, соединенный межклеточными контактами и лежащий на базальной мембране, поэтому их одновременно относят и к эпителиям. Они разделяют нейроны и спинномозговую жидкость, образуя нейро-ликворный барьер (высокопроницаемый). А в области сосудистых сплетений входят в состав гемато-ликворного барьера (между кровью и спинномозговой жидкостью). Этот барьер включает: эндотелий сосудов, рвст, которая окружает сосуды, базальную мембрану эпендимоцитов и слой эпендимных клеток.

Олигодендроглия – разнообразные мелкие клетки с короткими и малочисленными отростками, которые окружают нейроны. В нервных узлах они охватывают тела нейронов, обеспечивая барьерную функцию. Другая группа образует оболочки вдоль отростков нейронов, вместе с ними формируя нервные волокна. В периферической н.с. их называют леммоциты или шванновские клетки, в ЦНС – олигодендроциты.

Астроглия представлена астроцитами – звездчатые клетки, похожие на нейроны. Протоплазматические астроциты характерны для серого вещества ЦНС имеют короткие толстые отростки, волокнистые - для белого вещества и имеют длинные отростки. Их функции – опорная (заполняют пространства между нейронами), метаболическая и регуляторная (поддерживают постоянным состав ионов и медиаторов), барьерная (входят в состав гемато-энцефалического барьера, который надежно изолирует нейроны от крови, не допуская иммунного конфликта). ГЭБ включает эндотелий капилляров и их базальную мембрану, и плотный футляр из отростков астроцитов, который покрывает сосуды.

10. Безмиелиновые и миелиновые нервные волокна . Образование и особенности строения.

Нервные волокна – отростки нейронов (их называют осевыми цилиндрами), которые покрыты оболочкой из глиальных клеток. Различают миелиновые и безмиелиновые нервные волокна.

Безмиелиновые волокна образуются при погружении осевого цилиндра в углубления леммоцитов, которые лежат цепочкой вдоль всего аксона. Леммоциты прогибаются настолько, что их мембраны соприкасаются над осевым цилиндром. Эта дубликатура называется мезаксон. Если в цепочку леммоцитов погружается сразу несколько аксонов, такое волокно называют кабельным.

Миелиновые нервные волокна. Образуются с участием шванновских клеток, которые сначала формируют над осевым цилиндром мезаксон, а затем начинают многократно закручиваться. Цитоплазма вместе с ядром оттесняется наружу, образуя слой, который называют нейролеммой. Под ней лежит толстый слой тесно прилежащих сдвоенных мембран, который называют миелином. В определенных участках между витками остаются небольшие прослойки – миелиновые насечки. Поскольку шванновские клетки. Аксон длинный и шванновских клеток вдоль него много. На границах двух соседних клеток миелиновая оболочка исчезает. Эти участки называют узловые перехваты Ранвье.

В ЦНС миелиновая оболочка образуется несколько по-иному.

Миелиновые волокна проводят нервный импульс в десятки раз быстрее, чем безмиелиновые.

Нервная ткань человека в организме имеет несколько мест преимущественной локализации. Это мозг (спинной и головной), вегетативные ганглии и вегетативная нервная система (метасимпатический отдел). Головной мозг человека складывается из совокупности нейронов, общее число которых составляет не один миллиард. Сам же нейрон состоит из сома - тела, а также отростков, которые получают информацию от остальных нейронов - дендритов, и аксона, являющегося удлиненной структурой, передающей информацию от тела к дендритам других нервных клеток.

Различные варианты отростков у нейронов

Нервная ткань включает в себя в общей совокупности до триллиона нейронов различной конфигурации. Они могут быть униполярными, мультиполярными или биполярными в зависимости от количества отростков. Униполярные варианты с одним отростком встречаются у человека нечасто. Они обладают только одним отростком - аксоном. Такая единица нервной системы распространена у беспозвоночных животных (тех, которых нельзя отнести к млекопитающим, гадам, птицам и рыбам). При этом стоит учитывать, что по современной классификации к числу беспозвоночных относится до 97% всех видов животных, описанных к настоящему времени, поэтому униполярные нейроны достаточно широко представлены в земной фауне.

Нервная ткань с псевдоуниполярными нейронами (имеют один отросток, но раздвоенный на кончике) встречается у высших позвоночных в черепно-мозговых и спинно-мозговых нервах. Но чаще у позвоночных имеются в наличии биполярные образцы нейронов (есть и аксон, и дендрит) или мультиполярные (аксон один, а дендритов - несколько).

Классификация нервных клеток

Какую еще классификацию имеет нервная ткань? Нейроны в ней могут выполнять разные функции, поэтому среди них выделяют ряд типов, в том числе:

  • Афферентные нервные клетки, они же чувствительные, центростремительные. Эти клетки имеют небольшие размеры (относительно других клеток такого же типа), обладают разветвленным дендритом, связаны с функциями рецепторов сенсорного типа. Они расположены вне центральной нервной системы, имеют один отросток, расположенный в контакте с каким-либо органом, и другой отросток, направленный в спинной мозг. Эти нейроны создают импульсы под воздействием на органы внешней среды или каких-либо изменений в самом теле человека. Особенности нервной ткани, сформированной за счет чувствительных нейронов, таковы, что в зависимости от подвида нейронов (моносенсорные, полисенсорные или бисенсорные) могут получаться реакции, как строго на один раздражитель (моно), так и на несколько (би-, поли-). К примеру, нервные клетки во вторичной зоне на коре больших полушарий (зрительная зона) могут обрабатывать как зрительные, так и звуковые раздражители. Информация идет от центра к периферии и обратно.
  • Двигательные (эфферентные, моторные) нейроны передают информацию от центральной нервной системы к периферии. У них длинный аксон. Нервная ткань образует здесь продолжение аксона в виде периферических нервов, которые подходят к органам, мышцам (гладким и скелетным) и ко всем железам. Скорость прохождения возбуждения через аксон в нейронах такого типа очень велика.
  • Нейроны вставочного типа (ассоциативные) отвечают за передачу информации от чувствительного нейрона на двигательный. Ученые предполагают, что нервная ткань человека состоит из таких нейронов на 97-99%. Их преимущественной дислокацией является серое вещество в центральной нервной системе, и они могут быть тормозными или возбуждающими в зависимости от выполняемых функций. Первые из них имеют возможность не только передать импульс, но и модифицировать его, усиливая эффективность.

Специфические группы клеток

Помимо вышеуказанных классификаций нейроны могут быть фоновоактивными (реакции проходят безо всякого внешнего воздействия), другие же дают импульс только при применении к ним какой-то силы. Отдельную группу нервных клеток составляют нейроны-детекторы, которые могут избирательно реагировать на какие-то сенсорные сигналы, которые имеют поведенческое значение, они нужны для распознавания образов. К примеру, в новой коре имеются клетки, которые особенно чувствительны к данным, описывающим что-то, схожее с лицом человека. Свойства нервной ткани здесь таковы, что нейрон дает сигнал при любом расположении, цвете, размере «лицевого раздражителя». В зрительной же системе есть нейроны, отвечающие за детекцию сложных физических явлений вроде приближения и удаления предметов, циклические движения и др.

Нервная ткань образует в ряде случаев комплексы, очень важные для работы головного мозга, поэтому некоторые нейроны имеют персональные имена в честь открывших их ученых. Это клетки Беца, очень крупные по размерам, обеспечивающие связь двигательного анализатора через корковый конец с моторными ядрами в стволах головного мозга и ряда отделов спинного мозга. Это и тормозные клетки Реншоу, наоборот, небольшие по размерам, помогающие стабилизировать мотонейроны при удержании нагрузки, к примеру, на руку и для поддержания расположения тела человека в пространстве и др.

На каждый нейрон приходится около пяти нейроглий

Строение нервных тканей включает в себя еще один элемент под названием «нейроглия». Эти клетки, которые называют еще глиальными или глиоцитами, по размерам в 3-4 раза меньше самих нейронов. В мозге человека нейроглий в пять раз больше, чем нейронов, что, возможно, обуславливается тем, что нейроглии поддерживают работу нейронов, выполняя различные функции. Свойства нервной ткани данного вида таковы, что у взрослых людей глиоциты являются возобновляющимися, в отличие от нейронов, которые не восстанавливаются. К функциональным «обязанностям» нейроглий относится создание гематоэнцефалического барьера с помощью глиоцитов-астроцитов, которые не дают проникнуть в мозг всем крупным молекулам, патологическим процессам и многим лекарствам. Глиоциты-олегодендроциты - мелкие по размерам, образуют вокруг аксонов у нейронов жироподобный миелиновый футляр, несущий защитную фукнцию. Также нейроглии обеспечивают опорную, трофическую, разграничительную и др. функции.

Другие элементы нервной системы

Некоторые ученые в строение нервных тканей включают и эпендиму - тонкий слой клеток, которые выстилают центральный канал спинного мозга и стенки желудочков мозга. В массе своей эпендима однослойна, состоит из клеток цилиндрической формы, в третьем и четвертом желудочках мозга она имеет несколько слоев. Составляющие эпендиму клетки, эпендимоциты, выполняют секреторную, разграничительную и опорную функции. Их тела вытянуты по форме и имеют на концах «реснички», за счет движения которых производится перемещение спинномозговой жидкости. В третьем желудочке головного мозга находятся особенные эпендимные клетки (танициты), которые, как полагается, передают данные о составе спинномозговой жидкости в специальный отдел гипофиза.

«Бессмертные» клетки с возрастом исчезают

Органы нервной ткани, по широко распространенному определению, включают в себя также стволовые клетки. К ним относят незрелые образования, которые могут становиться клетками разных органов и тканей (потентность), проходить процесс самообновления. По сути, развитие любого многоклеточного организма начинается со стволовой клетки (зиготы), из которой делением и дифференцировкой получаются все остальные виды клеток (у человека их более двухсот двадцати). Зигота представляет собой тотипотентную стволовую клетку, которая дает начало полноценному живому организму за счет трехмерной дифференцировки в единицы экстраэмбриональных и эмбриональных тканей (через 11 дней после оплодотворения у человека). Потомками тотипотентных клеток являются плюрипотетные, которые дают начало элементам зародыша - энтодерме, мезодерме и эктодерме. Из последней как раз и развивается нервная ткань, кожный эпителий, отделы кишечной трубки и органы чувств, поэтому стволовые клетки - это неотъемлемая и важная часть нервной системы.

Стволовых клеток в организме человека очень мало. К примеру, у эмбриона имеется одна такая клетка на 10 тысяч, а у пожилого человека в возрасте около 70 лет - одна на пять-восемь миллионов. Стволовые клетки обладают, помимо вышеуказанной потентности, такими свойствами, как «хоуминг» - способность клетки после введения прибывать в зону повреждения и исправлять сбои, выполняя утраченные функции и сохраняя теломер клетки. В других клетках при делении теломер в части своей утрачивается, а в опухолевых, половых и стволовых есть так называемая телоразмерная активность, в ходе которой концы хромосом автоматически надстраиваются, что дает бесконечную возможность клеточных делений, то есть бессмертие. Стволовые клетки, как своеобразные органы нервной ткани, обладают таким высоким потенциалом за счет избытка информационной рибонуклеиновой кислоты для всех трех тысяч генов, которые участвую в первых этапах развития зародыша.

Основными источниками стволовых клеток выступают эмбрионы, плодный материал после аборта, пуповинная кровь, костный мозг, поэтому с октября 2011 года решением Европейского суда запрещены манипуляции с эмбриональными стволовыми клетками, так как эмбрион признан человеком с момента оплодотворения. В России допущено лечение собственными стволовыми клетками и донорскими для ряда заболеваний.

Вегетативная и соматическая нервная система

Ткани нервной системы пронизывают весь наш организм. От центральной нервной системы (головной, спиной мозг) отходят многочисленные периферические нервы, соединяющие органы тела с ЦНС. Отличием периферической системы от центральной является то, что она не защищена костями и поэтому легче подвергается различным повреждениям. По функциям нервная система подразделяется на вегетативную нервную систему (отвечает за внутреннее состояние человека) и соматическую, которая осуществляет контакты с раздражителями внешней среды, получает сигналы без перехода на подобные волокна, контролируется осознанно.

Вегетативная же дает, скорее, автоматическую, непроизвольную обработку поступающих сигналов. К примеру, симпатический отдел вегетативной системы при надвигающейся опасности повышает давление человека, увеличивает пульс и уровень адреналина. Парасимпатический отдел задействован, когда человек отдыхает, - зрачки у него сужаются, сердцебиение замедляется, кровеносные сосуды расширяются, стимулируется работа половой и пищеварительной систем. Функции нервных тканей энтерального отдела вегетативной нервной системы включают в себя ответственность за все процессы пищеварения. Самым главным органом вегетативной нервной системы является гипотоламус, который связан с эмоциональными реакциями. Стоит помнить, что импульсы в вегетативных нервах могут расходиться на находящиеся рядом волокна такого же типа. Поэтому эмоции способны отчетливо влиять на состояние самых разных органов.

Нервы контролируют мышцы и не только

Нервная и мышечная ткань в теле человека тесно взаимодействуют между собой. Так, основные спинномозговые нервы (отходят от спинного мозга) шейного отдела отвечают за движение мышц у основания шеи (первый нерв), обеспечивают двигательный и сенсорный контроль (2-й и 3-й нерв). Грудобрюшной нерв, продолжающийся от пятого, третьего и второго спинномозговых нервов, управляет диафрагмой, поддерживая процессы самопроизвольного дыхания.

Спинномозговые нервы (с пятого по восьмой) в совокупности с нервом грудинной области создают плечевое нервное сплетение, которое позволяет функционировать рукам и верхней части спины. Строение нервных тканей здесь кажется сложным, однако оно высокоорганизованно и немного различается у разных людей.

В общей сложности у человека 31 пара спинномозговых нервных выходов, восемь из которых находятся в шейном отделе, 12 в грудном, по пять в поясничном и крестцовом отделах и один в копчиковом. Кроме того, выделяют двенадцать черепно-мозговых нервов, идущих от мозгового ствола (отдел мозга, продолжающий спинной мозг). Они отвечают за обоняние, зрение, движение глазного яблока, движение языка, мимику лица и др. Кроме того, десятый нерв здесь отвечает за информацию от груди и живота, а одиннадцатый за работу трапециевидной и кивательной мышц, которые находятся частично вне головы. Из крупных элементов нервной системы стоит упомянуть крестцовое сплетение нервов, поясничное, межреберные нервы, бедренные нервы и симпатический нервный ствол.

Нервная система в животном мире представлена самыми различными образцами

Нервная ткань животных зависит от того, к какому классу относится рассматриваемое живое существо, хотя в основе всего лежат опять же нейроны. В биологической систематике животным считается создание, имеющее в клетках ядро (эукариот), способное к движению и питающееся готовыми органическими соединениями (гетеротрофность). А это значит, что можно рассматривать как нервную систему кита, так и, к примеру, червя. Мозг некоторых из последних, в отличие от человеческого, содержит не более трех сотен нейронов, а остальная система представляет собой комплекс нервов вокруг пищевода. Нервные окончания, выходящие к глазам, в ряде случаев отсутствуют, так как у живущих под землей червей нет зачастую самих глаз.

Вопросы для размышлений

Функции нервных тканей в животном мире ориентированы в основном на то, чтобы их владелец успешно выживал в окружающей среде. При этом природа таит множество загадок. К примеру, зачем пиявке мозг с 32 нервными узлами, каждый из которых сам по себе мини-мозг? Почему у самого маленького в мире паука этот орган занимает до 80% полости всего тела? Встречаются и явные диспропорции в размерах самого животного и частей его нервной системы. Гигантские кальмары располагают главным «органом для размышлений» в виде «пончика» с дыркой посредине и весом около 150 грамм (при общем весе до 1,5 центнеров). И это все может быть предметом размышлений для мозга человека.

Нервная ткань является функционально ведущей тканью нервной системы; она состоит из нейронов (нервных клеток), обладающих способностью к выработке и проведению нервных импульсов, и клеток нейроглии (глиоцитов), выполняющих ряд вспомогательных функций и обеспечивающих деятельность нейронов.

Нейроны и нейроглия (за исключением одной из ее разновидностей - микроглии) являются производными нейрального зачатка. Нейральный зачаток обосабливается из эктодермы в ходе процесса нейруляции, при этом выделяются три его компонента: нервная трубка - дает начало нейронам и глии органов центральной нервной системы (ЦНС); нервный гребень - образует нейроны и глию нервных ганглиев и нейральные плакоды - утолщенные участки эктодермы в краниальной части зародыша, дающие начало некоторым клеткам органов чувств.

Нейроны

Нейроны (нервные клетки) - клетки различных размеров, состоящие из клеточного тела (перикариона) и отростков, обеспечивающих проведение нервных импульсов, - дендритов, приносящих импульсы к телу нейрона, и аксона, несущего импульсы от тела нейрона (рис. 98-102).

Классификация нейронов осуществляется по трем видам признаков: морфологическим, функциональным и биохимическим.

Морфологическая классификация нейронов учитывает количество их отростков и подразделяет все нейроны на три типа (см. рис. 98): униполярные, биполярные и мультиполярные. Разновидностью биполярных нейронов являются псевдоуниполярные нейроны, в которых от тела клетки отходит единый вырост, который далее Т-образно делится на два отростка - периферический и центральный. Наиболее распространенным типом нейронов в организме являются мультиполярные.

Функциональная классификация нейронов разделяет их по характеру выполняемой функции (в соответствии с их местом в рефлекторной дуге) на три типа (рис. 119, 120): афферентные (чувствительные, сенсорные), эфферентные (двигательные, мотонейроны) и интернейроны (вставочные). Последние количественно преобладают над нейронами других типов. Нейроны связаны в цепи и сложные системы посредством специализированных межнейрональных контактов - синапсов.

Биохимическая классификация нейронов основана на химической природе нейромедиаторов, ис-

пользуемых ими в синаптической передаче нервных импульсов (выделяют холинергические, адренергические, серотонинергические, дофаминергические, пептидергические и др.).

Функциональная морфология нейрона. Нейрон (перикарион и отростки) окружен плазмолеммой, которая обладает способностью к проведению нервного импульса. Тело нейрона (перикарион) включает ядро и окружающую его цитоплазму (за исключением входящей в состав отростков).

Ядро нейрона - обычно одно, крупное, округлое, светлое, с мелкодисперсным хроматином (преобладанием эухроматина), одним, иногда 2-3 крупными ядрышками (см. рис. 99-102). Эти особенности отражают высокую активность процессов транскрипции в ядре нейрона.

Цитоплазма перикариона нейрона богата органеллами, а его плазмолемма осуществляет рецепторные функции, так как на ней находятся многочисленные нервные окончания (аксо-соматические синапсы), несущие возбуждающие и тормозные сигналы от других нейронов (см. рис. 99). Цистерны хорошо развитой гранулярной эндоплазматической сети часто образуют отдельные комплексы, которые на светооптическом уровне при окраске анилиновыми красителями имеют вид базофильных глыбок (см. рис. 99, 100, 102), в совокупности получивших название хроматофильной субстанции (старое название - тельца Ниссля, тигроидное вещество). Наиболее крупные из них обнаруживаются в мотонейронах (см. рис. 100). Комплекс Гольджи хорошо развит (впервые описан именно в нейронах) и состоит из множественных диктиосом, расположенных обычно вокруг ядра (см. рис. 101 и 102). Митохондрии - очень многочисленны и обеспечивают значительные энергетические потребности нейрона, лизосомальный аппарат обладает высокой активностью. Цитоскелет нейронов хорошо развит и включает все элементы - микротрубочки (нейротрубочки), микрофиламенты и промежуточные филаменты (нейрофиламенты). Включения в цитоплазме нейрона представлены липидными каплями, гранулами липофусцина (пигмента старения, или изнашивания), (нейро)меланина - в пигментированных нейронах.

Дендриты проводят импульсы к телу нейрона, получая сигналы от других нейронов через многочисленные межнейронные контакты (аксо-дендритные синапсы - см. рис. 99). В большинстве случаев дендриты многочисленны, имеют относительно небольшую длину и сильно вет-

вятся вблизи тела нейрона. Крупные стволовые дендриты содержат все виды органелл, по мере снижения их диаметра из них исчезают элементы комплекса Гольджи, а цистерны гранулярной эндоплазматической сети (хроматофильная субстанция) сохраняются. Нейротрубочки и нейрофиламенты многочисленны и располагаются параллельными пучками.

Аксон - длинный отросток, по которому нервные импульсы передаются на другие нейроны или клетки рабочих органов (мышц, желез). Он отходит от утолщенного участка тела нейрона, не содержащего хроматофильной субстанции, - аксонного холмика, в котором генерируются нервные импульсы; почти на всем протяжении он покрыт глиальной оболочкой (см. рис. 99). Центральная часть цитоплазмы аксона (аксоплазмы) содержит пучки нейрофиламентов, ориентированных вдоль его длины, а ближе к периферии располагаются пучки микротрубочек, цистерны гранулярной эндоплазматической сети, элементы комплекса Гольджи, митохондрии, мембранные пузырьки, сложная сеть микрофиламентов. Хроматофильная субстанция в аксоне отсутствует. Аксон может по своему ходу давать ответвления (коллатерали аксона), которые обычно отходят от него под прямым углом. В конечном участке аксон нередко распадается на тонкие веточки (терминальное ветвление). Аксон заканчивается специализированными терминалями (нервными окончаниями) на других нейронах или клетках рабочих органов.

Синапсы

Синапсы - специализированные контакты, осуществляющие связь между нейронами, подразделяются на электрические и химические.

Электрические синапсы у млекопитающих сравнительно редки; они имеют строение щелевых соединений (см. рис. 30), в которых мембраны синаптически связанных клеток (пре- и постсинаптическая) разделены узким промежутком, пронизанным коннексонами.

Химические синапсы (везикулярные синапсы) - наиболее распространенный тип у млекопитающих. Химический синапс состоит из трех компонентов: пресинаптической части, постсинаптической части и синаптической щели между ними (рис. 103).

Пресинаптическая часть имеет вид расширения - терминального бутона и включает: синаптические пузырьки, содержащие нейромедиатор, митохондрии, агранулярную эндоплазматическую сеть, нейротрубочки, нейрофиламенты, пресинап тическую мембрану с пресинаптическим

уплотнением, связанным с пресинаптической решеткой.

Постсинаптическая часть представлена постсинаптической мембраной, содержащей особые комплексы интегральных белков - синаптические рецепторы, связывающиеся с нейромедиатором. Мембрана утолщена за счет скопления под ней плотного филаментозного белкового материала (постсинаптическое уплотнение).

Синаптическая щель содержит вещество синаптической щели, которое часто имеет вид поперечно расположенных гликопротеиновых филаментов, обеспечивающих адгезивные связи пре- и постсинаптической частей, а также направленную диффузию нейромедиатора.

Механизм передачи нервного импульса в химическом синапсе: под влиянием нервного импульса синаптические пузырьки выделяют в синаптическую щель содержащийся в них нейромедиатор, который, связываясь с рецепторами в постсинаптической части, вызывает изменения ионной проницаемости ее мембраны, что приводит к ее деполяризации (в возбуждающих синапсах) или гиперполяризации (в тормозных синапсах).

Нейроглия

Нейроглия - обширная гетерогенная группа элементов нервной ткани, обеспечивающая деятельность нейронов и выполняющая опорную, трофическую, разграничительную, барьерную, секреторную и защитную функции. В мозгу человека содержание глиальных клеток (глиоцитов) в 5-10 раз превышает число нейронов.

Классификация глии выделяет макроглию и микроглию. Макроглия подразделяется на эпендимную глию, астроцитарную глию (астроглию) и олигодендроглию (рис. 104).

Эпендимная глия (эпендима) образована клетками кубической или столбчатой формы (эпендимоцитами), которые в виде однослойных пластов выстилают полости желудочков головного мозга и центрального канала спинного мозга (см. рис. 104, 128). Ядро этих клеток содержит плотный хроматин, органеллы умеренно развиты. Апикальная поверхность части эпендимоцитов несет реснички, которые своими движениями перемещают спинномозговую жидкость, а от базального полюса некоторых клеток отходит длинный отросток, протягивающийся до поверхности мозга и входящий в состав поверхностной глиальной пограничной мембраны (краевой глии).

Специализированными клетками эпендимной глии являются танициты и эпендимоциты сосудистого сплетения (сосудистый эпителий).

Танициты имеют кубическую или призматическую форму, их апикальная поверхность

покрыта микроворсинками и отдельными ресничками, а от базальной отходит длинный отросток, оканчивающийся пластинчатым расширением на кровеносном капилляре (см. рис. 104). Танициты поглощают вещества из спинномозговой жидкости и транспортируют их по своему отростку в просвет сосудов, обеспечивая тем самым связь между спинномозговой жидкостью в просвете желудочков мозга и кровью.

Хороидные эпендимоциты (эпендимоциты сосудистого сплетения) образуют сосудистый эпителий в желудочках головного мозга, входят в состав гемато-ликворного барьера и участвуют в образовании спинномозговой жидкости. Это - клетки кубической формы (см. рис. 104) с многочисленными микроворсинками на выпуклой апикальной поверхности. Они располагаются на базальной мембране, отделяющей их от подлежащей рыхлой соединительной ткани мягкой мозговой оболочки, в которой находится сеть фенестрированных капилляров.

Функции эпендимной глии: опорная (за счет базальных отростков); образование барьеров (нейроликворного и гемато-ликворного), ультрафильтрация компонентов спинномозговой жидкости.

Астроглия представлена астроцитами - крупными клетками со светлым овальным ядром, умеренно развитыми органеллами и многочисленными промежуточными филаментами, содержащими особый глиальный фибриллярный кислый белок (маркер астроцитов). На концах отростков имеются пластинчатые расширения, которые, соединяясь друг с другом, окружают в виде мембран сосуды (сосудистые ножки) или нейроны (см. рис. 104). Выделяют протоплазматические астроциты (с многочисленными разветвленными короткими толстыми отростками; встречаются преимущественно в сером веществе ЦНС) и фиброзные (волокнистые) астроциты (с длинными тонкими умеренно ветвящимися отростками; располагаются, в основном, в белом веществе).

Функции астроцитов: разграничительная, транспортная и барьерная (направлена на обеспечение оптимального микроокружения нейронов). Участвуют в образовании периваскулярных глиальных пограничных мембран, формируя основу гематоэнцефалического барьера. Совместно с другими элементами глии образуют поверхностную глиальную пограничную мембран у (краевую глию) мозга, расположенную под мягкой мозговой оболочкой, а также перивентрикулярную пограничную глиальную мембрану под слоем эпендимы, участвующей в образовании нейро-ликворного барьера. Отростки астроцитов окружают тела нейронов и области синапсов. Астроциты вы-

полняют также метаболическую и регуляторную функции (регулируя концентрацию ионов и нейромедиаторов в микроокружении нейронов), они участвуют в различных защитных реакциях при повреждении нервной ткани.

Олигодендроглия - обширная группа разнообразных мелких клеток (олигодендроцитов) с короткими немногочисленными отростками, которые окружают тела нейронов (сателлитные, или перинейрональные, олигодендроциты), входят в состав нервных волокон и нервных окончаний (в периферической нервной системе эти клетки называют шванновскими клетками, или нейролеммоцитами) - см. рис. 104. Клетки олигодендроглии встречаются в ЦНС (сером и белом веществе) и периферической нервной системе; характеризуются темным ядром, плотной цитоплазмой с хорошо развитым синтетическим аппаратом, высоким содержанием митохондрий, лизосом и гранул гликогена.

Функции олигодендроглии: барьерная, метаболическая (регулирует метаболизм нейронов, захватывает нейромедиаторы), образование оболочек вокруг отростков нейронов.

Микроглия - совокупность мелких удлиненных подвижных звездчатых клеток (микроглиоцитов) с плотной цитоплазмой и сравнительно короткими ветвящимися отростками, располагающихся располагающимися преимущественно вдоль капилляров в центральной нервной системе (см. рис. 104). В отличие от клеток макроглии, они имеют мезенхимное происхождение, развиваясь непосредственно из моноцитов (или периваскулярных макрофагов мозга) и относятся к макрофагально-моноцитарной системе. Для них характерны ядра с преобладанием гетерохроматина и высокое содержание лизосом в цитоплазме. При активации утрачивают отростки, округляются и усиливают фагоцитоз, захватывают и представляют антигены, секретируют ряд цитокинов.

Функция микроглии - защитная (в том числе иммунная); ее клетки играют роль специализированных макрофагов нервной системы.

Нервные волокна

Нервные волокна представляют собой отростки нейронов, покрытые глиальными оболочками. Различают два вида нервных волокон - безмиелиновые и миелиновые. Оба вида состоят из центрально лежащего отростка нейрона, окруженного оболочкой из клеток олигодендроглии (в периферической нервной системе они называются шванновскими клетками (нейролеммоцитами).

Миелиновые нервные волокна встречаются в ЦНС и периферической нервной системе и ха-

рактеризуются высокой скоростью проведения нервных импульсов. Они обычно толще безмиелиновых и содержат отростки нейронов большего диаметра. В таком волокне отросток нейрона окружен миелиновой оболочкой, вокруг которой располагается тонкий слой, включающий цитоплазму и ядро нейролеммоцита - нейролемма (рис. 105- 108). Снаружи волокно покрыто базальной мембраной. Миелиновая оболочка содержит высокие концентрации липидов и интенсивно окрашивается осмиевой кислотой, имея под световым микроскопом вид однородного слоя (см. рис. 105), однако под электронным микроскопом обнаруживается, что она состоит из многочисленных мембранных витков пластинок миелина (см. рис. 107 и 108). Участки миелиновой оболочки, в которых сохраняются промежутки между витками миелина, заполненные цитоплазмой нейролеммоцита и поэтому не окрашиваемые осмием, имеют вид насечек миелина (см. рис. 105-107). Миелиновая оболочка отсутствует в участках, соответствующих границе соседних нейролеммоцитов - узловых перехватах (см. рис. 105-107). При электронной микроскопии в области перехвата выявляются узловое расширение аксона и узловые интердигитации цитоплазмы соседних нейролеммоцитов (см. рис. 107). Рядом с узловым перехватом (паранодальная область) миелиновая оболочка охватывает аксон в виде терминальной пластинчатой манжетки. По длине волокна миелиновая оболочка имеет прерывистый ход; участок между двумя узловыми перехватами (межузловой сегмент) соответствует длине одного нейролеммоцита (см. рис. 105 и 106).

Безмиелиновые нервные волокна у взрослого располагаются преимущественно в составе автономной нервной системы и характеризуются сравнительно низкой скоростью проведения нервных импульсов. Они образованы тяжами нейролеммоцитов, в цитоплазму которых погружен проходящий сквозь них аксон, связанный с плазмолеммой нейролеммоцитов дупликатурой плазмолеммы - мезаксоном. Нередко в цитоплазме одного нейролеммоцита могут находиться до 10-20 осевых цилиндров. Такое волокно напоминает электрический кабель и поэтому называется волокном кабельного типа. Поверхность волокна покрыта базальной мембраной (рис. 109).

Нервные окончания

Нервные окончания - концевые аппараты нервных волокон. По функции они разделяются на три группы:

1) межнейрональные контакты (синапсы) - обеспечивают функциональную связь между нейронами (см. выше);

2)рецепторные (чувствительные) окончания - воспринимают раздражения из внешней и внутренней среды, имеются на дендритах;

3)эфферентные (эффекторные) окончания - передают сигналы из нервной системы на исполнительные органы (мышцы, железы), имеются на аксонах.

Рецепторные (чувствительные) нервные окончания в зависимости от природы регистрируемого раздражения подразделяются (в соответствии с физиологической классификацией) на механорецепторы, хеморецепторы, терморецепторы и болевые рецепторы (ноцицепторы). Морфологическая классификация чувствительных нервных окончаний выделяет свободные и несвободны е чувствительные нервные окончания; последние включают инкапсулированные и неинкапсулированные окончания (рис. 110).

Свободные чувствительные нервные окончания состоят только из терминальных ветвлений дендрита чувствительного нейрона (см. рис. 110). Они встречаются в эпителии, а также в соединительной ткани. Проникая в эпителиальный пласт, нервные волокна утрачивают миелиновую оболочку и нейролемму, а базальная мембрана их нейролеммоцитов сливается с эпителиальной. Свободные нервные окончания обеспечивают восприятие температурных (тепловых и холодовых), механических и болевых сигналов.

Несвободные чувствительные нервные окончания

Несвободные неинкапсулированные нервные окончания состоят из ветвлений дендритов, окруженных леммоцитами. Они встречаются в соединительной ткани кожи (дерме), а также собственной пластинки слизистых оболочек.

Несвободные инкапсулированные нервные окончания весьма разнообразны, но имеют единый общий план строения: их основу составляют ветвления дендрита, окруженные нейролеммоцитами, снаружи они покрыты соединительнотканной (фиброзной) капсулой (см. рис. 110). Все они являются механорецепторами, располагаются в соединительной ткани внутренних органов, кожи и слизистых оболочек, капсулах суставов. К этому виду нервных окончаний относят тактильные тельца (осязательные тельца Мейснера), веретеновидные чувст вительные тельца (колбы Краузе), пластинчатые тельца (Фатера-Пачини), чувствительные

тельца (Руффини). Самыми крупными из них являются пластинчатые тельца, которые содержат слоистую наружную колбу (см. рис. 110), состоящую из 10-60 концентрических пластин, между которыми имеется жидкость. Пластины образованы уплощенными фибробластами (по другим сведениям - нейролеммоцитами). Помимо рецепции механических стимулов, колбы Краузе, возможно, воспринимают также холод, а тельца Руффини - тепло.

Нейро-мышечные веретена - рецепторы растяжения волокон поперечнополосатых мышц - сложные инкапсулированные нервные окончания, обладающие как чувствительной, так и двигательной иннервацией (рис. 111). Нейромышечное веретено располагается параллельно ходу волокон мышцы, называемых экстрафузальными. Оно покрыто соединительнотканной капсулой, внутри которой находятся тонкие поперечнополосатые интрафузальные мышечные волокна двух видов: волокна с ядерным мешочком (скоплением ядер в расширенной центральной части волокна) и волокна с ядерной цепочкой (расположением ядер в виде цепочки в центральной части). Чувствительные нервные волокна образуют анулоспиральные нервные окончания на центральной части интрафузальных волокон и гроздевидные нервные окончания - у их краев. Двигательные нервные волокна - тонкие, образуют мелкие нейро-мышечные синапсы по краям интрафузальных волокон, обеспечивая их тонус.

Сухожильные органы, или нейро-сухожильные веретена (Гольджи), располагаются в области соединения волокон поперечнополосатых мышц с коллагеновыми волокнами сухожилий. Каждый сухожильный орган образован соединительнотканной капсулой, которая охватывает группу сухожильных пучков, оплетенных многочисленными терминальными веточками нервных волокон, частично покрытых нейролеммоцитами. Возбуждение рецепторов возникает при растяжении сухожилия во время мышечного сокращения.

Эфферентные (эффекторные) нервные окончания в зависимости от природы иннервируемого органа подразделяются на двигательные и секре-

торные. Двигательные окончания имеются в поперечнополосатых и гладких мышцах, секреторные - в железах.

Нейро-мышечное соединение (нейро-мышечный синапс, двигательная концевая пластинка) - двигательное окончание аксона мотонейрона на волокнах поперечнополосатых скелетных мышц - по строению сходно с межнейрональными синапсами и состоит из трех частей (рис. 112 и 113):

Пресинаптическая часть образована концевыми ветвлениями аксона, который вблизи мышечного волокна утрачивает миелиновую оболочку и дает несколько веточек, которые сверху покрыты уплощенными нейролеммоцитами (клетками телоглии) и базальной мембраной. В терминалях аксона имеются митохондрии и синаптические пузырьки, содержащие ацетилхолин.

Синаптическая щель (первичная) располагается между плазмолеммой ветвлений аксона и мышечным волокном; она содержит материал базальной мембраны и отростки глиальных клеток, разделяющих соседние активные зоны одного окончания.

Постсинаптическая часть представлена мембраной мышечного волокна (сарколеммой), образующей многочисленные складки (вторичные синаптические щели), которые заполнены материалом, являющимся продолжением базальной мембраны.

Двигательные нервные окончания в сердечной и гладких мышцах имеют вид варикозно расширенных участков ветвей аксонов, которые содержат многочисленные синаптические пузырьки и митохондрии и отделены от мышечных клеток широкой щелью.

Секреторные нервные окончания (нейро-железистые синапсы) представляют собой конечные участки тонких аксонных веточек. Одни из них, утрачивая оболочку из нейролеммоцитов, проникают сквозь базальную мембрану и располагаются между секреторными клетками, заканчиваясь терминальными варикозными расширениями, содержащими пузырьки и митохондрии (экстрапаренхимный, или гиполеммальный, синапс). Другие не проникают сквозь базальную мембрану, образуя варикозные расширения вблизи секреторных клеток (паренхимный, или эпилеммальный синапс).

НЕРВНАЯ ТКАНЬ

Рис. 98. Морфологическая классификация нейронов (схема):

A - униполярный нейрон (амакринная клетка сетчатки глаза); Б - биполярный нейрон (вставочный нейрон сетчатки глаза); В - псевдоуниполярный нейрон (афферентная клетка спинномозгового узла); Г1-Г3 - мультиполярные нейроны: Г1 - мотонейрон спинного мозга; Г2 - пирамидный нейрон коры полушарий большого мозга, Г3 - клетка Пуркинье коры полушарий мозжечка.

1 - перикарион, 1.1 - ядро; 2 - аксон; 3 - дендрит(ы); 4 - периферический отросток; 5 - центральный отросток.

Примечание: функциональная классификация нейронов, согласно которой эти клетки подразделяются на афферентные (чувствительные, сенсорные), вставочные (интернейроны) и эфферентные (мотонейроны), основывается на их положении в рефлекторных дугах (см. рис. 119 и 120)

Рис. 99. Строение мультиполярного нейрона (схема):

1 - тело нейрона (перикарион): 1.1 - ядро, 1.1.1 - хроматин, 1.1.2 - ядрышко, 1.2 - цитоплазма, 1.2.1 - хроматофильная субстанция (тельца Ниссля); 2 - дендриты; 3 - аксонный холмик; 4 - аксон: 4.1 - начальный сегмент аксона, 4.2 - коллатераль аксона, 4.3 - нейро-мышечный синапс (двигательное нервное окончание на волокне поперечнополосатой мышцы); 5 - миелиновая оболочка; 6 - узловые перехваты; 7 - межузловой сегмент; 8 - синапсы: 8.1 - аксо-аксональный синапс, 8.2 - аксо-дендритные синапсы, 8.3 - аксо-соматические синапсы

Рис. 100. Мультиполярный двигательный нейрон спинного мозга. Глыбки хроматофильной субстанции (тельца Ниссля) в цитоплазме

Окраска: тионин

1 - тело нейрона (перикарион): 1.1 - ядро, 1.2 - хроматофильная субстанция; 2 - начальные отделы дендритов; 3 - аксонный холмик; 4 - аксон

Рис. 101. Псевдоуниполярный чувствительный нейрон чувствительного узла спинномозгового нерва. Комплекс Гольджи в цитоплазме

Окраска: азотнокислое серебро-гематоксилин

1 - ядро; 2 - цитоплазма: 2.1 - диктиосомы (элементы комплекса Гольджи)

Рис. 102. Ультраструктурная организация нейрона

Рисунок с ЭМФ

1 - тело нейрона (перикарион): 1.1 - ядро, 1.1.1 - хроматин, 1.1.2 - ядрышко, 1.2 - цитоплазма: 1.2.1 - хроматофильная субстанция (тельца Ниссля) - агрегаты цистерн гранулярной эндоплазматической сети, 1.2.2 - комплекс Гольджи, 1.2.3 - лизосомы, 1.2.4 - митохондрии, 1.2.5 - элементы цитоскелета (нейротрубочки, нейрофиламенты); 2 - аксонный холмик; 3 - аксон: 3.1 - коллатераль аксона, 3.2 - синапс; 4 - дендриты

Рис. 103. Ультраструктурная организация химического межнейронального синапса (схема)

1 - пресинаптическая часть: 1.1 - синаптические пузырьки, содержащие нейромедиатор, 1.2 - митохондрии, 1.3 - нейротрубочки, 1.4 - нейрофиламенты, 1.5 - цистерна гладкой эндоплазматической сети, 1.6 - пресинаптическая мембрана, 1.7 - пресинаптическое уплотнение (пресинаптическая решетка); 2 - синаптическая щель: 2.1 - интрасинаптические филаменты; 3 - постсинаптическая часть: 3.1 - постсинаптическая мембрана, 3.2 - постсинаптическое уплотнение

Рис. 104. Различные виды глиоцитов в центральной (ЦНС) и периферической (ПНС) нервной системе

А - В - макроглия, Г - микроглия;

A1, А2, А3 - эпендимная глия (эпендима); Б1, Б2 - астроциты; В1, В2, В3 - олигодендроциты; Г1, Г2 - клетки микроглии

A1 - клетки эпендимной глии (эпендимоциты): 1 - тело клетки: 1.1 - реснички и микроворсинки на апикальной поверхности, 1.2 - ядро; 2 - базальный отросток. Эпендима выстилает полость желудочков головного мозга и центрального канала спинного мозга.

А2 - таницит (специализированная клетка эпендимы): 1 - тело клетки, 1.1 - микроворсинки и отдельные реснички на апикальной поверхности, 1.2 - ядро; 2 - базальный отросток: 2.1 - уплощенный вырост отростка («концевая ножка») на кровеносном капилляре (красная стрелка), через которую в кровь транспортируются вещества, поглощенные апикальной поверхностью клетки из спинномозговой жидкости (СМЖ). A3 - хороидные эпендимоциты (клетки сосудистых сплетений, участвующие в образовании СМЖ): 1 - ядро; 2 - цитоплазма: 2.1 - микроворсинки на апикальной поверхности клетки, 2.2 - базальный лабиринт. Вместе со стенкой фенестрированного кровеносного капилляра (красная стрелка) и лежащей между ними соединительной тканью эти клетки образуют гемато-ликворный барьер.

Б1 - протоплазматический астроцит: 1 - тело клетки: 1.1 - ядро; 2 - отростки: 2.1 - пластинчатые расширения отростков - образуют вокруг кровеносных капилляров (красная стрелка) периваскулярную пограничную мембрану (зеленая стрелка) - основной компонент гемато-энцефалического барьера, на поверхности мозга - поверхностную пограничную глиальную мембрану (желтая стрелка), покрывают тела и дендриты нейронов в ЦНС (не показано).

Б2 - волокнистый астроцит: 1 - тело клетки: 1.1 - ядро; 2 - отростки клетки (пластинчатые расширения отростков не показаны).

В1 - олигодендроцит (олигодендроглиоцит) - клетка ЦНС, образующая миелиновую оболочку вокруг аксона (голубая стрелка): 1 - тело олигодендроцита: 1.1 - ядро; 2 - отросток: 2.1 - миелиновая оболочка.

В2 - клетки-сателлиты - олигодендроциты ПНС, образующие глиальную оболочку вокруг тела нейрона (жирная черная стрелка): 1 - ядро сателлитной глиальной клетки; 2 - цитоплазма сателлитной глиальной клетки.

В3 - нейролеммоциты (шванновские клетки) - олигодендроциты ПНС, образующие миелиновую оболочку вокруг отростка нейрона (голубая стрелка): 1 - ядро нейролеммоцита; 2 - цитоплазма нейролеммоцита; 3 - миелиновая оболочка.

Г1 - клетка микроглии (микроглиоцит, или клетка Ортега) в неактивном состоянии: 1 - тело клетки, 1.1 - ядро; 2 - ветвящиеся отростки.

Г2 - клетка микроглии (микроглиоцит, или клетка Ортега) в активированном состоянии: 1 - ядро; 2 - цитоплазма, 2.1 - вакуоли

Пунктирной стрелкой показаны фенотипические взаимопревращения клеток микроглии

Рис. 105. Изолированные миелиновые нервные волокна

Окраска: осмирование

1 - отросток нейрона (аксон); 2 - миелиновая оболочка: 2.1 - насечки миелина (Шмидта-Лантермана); 3 - нейролемма; 4 - узловой перехват (перехват Ранвье); 5 - межузловой сегмент

Рис. 106. Миелиновое нервное волокно. Продольный срез (схема):

1 - отросток нейрона (аксон); 2 - миелиновая оболочка: 2.1 - насечки миелина (Шмидта-Лантермана); 3 - нейролемма: 3.1 - ядро нейролеммоцита (шванновской клетки), 3.2 - цитоплазма нейролеммоцита; 4 - узловой перехват (перехват Ранвье); 5 - межузловой сегмент; 6 - базальная мембрана

Рис. 107. Ультраструктура миелинового нервного волокна. Продольный срез (схема):

1 - отросток нейрона (аксон): 1.1 - узловое расширение аксона; 2 - витки миелиновой оболочки: 2.1 - насечки миелина (Шмидта-Лантермана); 3 - нейролемма: 3.1 - ядро нейролеммоцита (шванновской клетки), 3.2 - цитоплазма нейролеммоцита, 3.2.1 - узловая интердигитация соседних нейролеммоцитов, 3.2.2 - паранодальные карманы нейролеммоцитов, 3.2.3 - плотные пластинки (связывающие паранодальные карманы с аксолеммой), 3.2.4 - внутренний (вокругаксональный) листок цитоплазмы нейролеммоцита; 4 - узловой перехват (перехват Ранвье)

Рис. 108. Ультраструктурная организация миелинового нервного волокна (поперечный срез)

Рисунок с ЭМФ

1 - отросток нейрона; 2 - слой миелина; 3 - нейролемма: 3.1 - ядро нейролеммоцита, 3.2 - цитоплазма нейролеммоцита; 4 - базальная мембрана

Рис. 109. Ультраструктурная организация безмиелинового нервного волокна кабельного типа (поперечный срез)

Рисунок с ЭМФ

1 - отростки нейронов; 2 - нейролеммоцит: 2.1 - ядро, 2.2 - цитоплазма, 2.3 - плазмолемма; 3 - мезаксон; 4 - базальная мембрана

Рис. 110. Чувствительные нервные окончания (рецепторы) в эпителии и соединительной ткани

Окраска: А-В - азотнокислое серебро; Г - гематоксилин-эозин

A - свободные нервные окончания в эпителии, Б, В, Г - инкапсулированные чувствительные нервные окончания в соединительной ткани: Б - тактильное тельце (осязательное тельце Мейснера), В - веретеновидное чувствительное тельце (колба Краузе), Г - пластинчатое тельце (Фатера-Пачини)

1 - нервное волокно: 1.1 - дендрит, 1.2 - миелиновая оболочка; 2 - внутренняя колба: 2.1 - терминальные ветвления дендрита, 2.2 - нейролеммоциты (шванновские клетки); 3 - наружная колба: 3.1 - концентрические пластины, 3.2 - фиброциты; 4 - соединительнотканная капсула

Рис. 111. Чувствительное нервное окончание (рецептор)в скелетной мышце - нейро-мышечное веретено

1 - экстрафузальные мышечные волокна; 2 - соединительнотканная капсула; 3 - интрафузальные мышечные волокна: 3.1 - мышечные волокна с ядерным мешочком, 3.2 - мышечные волокна с ядерной цепочкой; 4 - окончания нервных волокон: 4.1 - анулоспиральные нервные окончания, 4.2 - гроздевидные нервные окончания.

Двигательные нервные волокна и образованные ими нейро-мышечные синапсы на интрафузальных мышечных волокнах не показаны

Рис. 112. Двигательное нервное окончание в скелетной мышце (нейро-мышечный синапс)

Окраска: нитрат серебра-гематоксилин

1 - миелиновое нервное волокно; 2 - нейро-мышечный синапс: 2.1 - концевые ветвления аксона, 2.2 - видоизмененные нейролеммоциты (клетки телоглии); 3 - волокна скелетной мышцы

Рис. 113. Ультраструктурная организация двигательного нервного окончания в скелетной мышце (нейро-мышечного синапса)

Рисунок с ЭМФ

1 - пресинаптическая часть: 1.1 - миелиновая оболочка, 1.2 - нейролеммоциты, 1.3 - клетки телоглии, 1.4 - базальная мембрана, 1.5 - концевые ветвления аксона, 1.5.1 - синаптические пузырьки, 1.5.2 - митохондрии, 1.5.3 - пресинаптическая мембрана; 2 - первичная синаптическая щель: 2.1 - базальная мембрана, 2.2 - вторичные синаптические щели; 3 - постсинаптическая часть: 3.1 - постсинаптическая сарколемма, 3.1.1 - складки сарколеммы; 4 - волокно скелетной мышцы

Нервная ткань человека в организме имеет несколько мест преимущественной локализации. Это мозг (спинной и головной), вегетативные ганглии и вегетативная нервная система (метасимпатический отдел). Головной мозг человека складывается из совокупности нейронов, общее число которых составляет не один миллиард. Сам же нейрон состоит из сома - тела, а также отростков, которые получают информацию от остальных нейронов - дендритов, и аксона, являющегося удлиненной структурой, передающей информацию от тела к дендритам других нервных клеток.

Различные варианты отростков у нейронов

Нервная ткань включает в себя в общей совокупности до триллиона нейронов различной конфигурации. Они могут быть униполярными, мультиполярными или биполярными в зависимости от количества отростков. Униполярные варианты с одним отростком встречаются у человека нечасто. Они обладают только одним отростком - аксоном. Такая единица нервной системы распространена у беспозвоночных животных (тех, которых нельзя отнести к млекопитающим, гадам, птицам и рыбам). При этом стоит учитывать, что по современной классификации к числу беспозвоночных относится до 97% всех видов животных, описанных к настоящему времени, поэтому униполярные нейроны достаточно широко представлены в земной фауне.

Нервная ткань с псевдоуниполярными нейронами (имеют один отросток, но раздвоенный на кончике) встречается у высших позвоночных в черепно-мозговых и спинно-мозговых нервах. Но чаще у позвоночных имеются в наличии биполярные образцы нейронов (есть и аксон, и дендрит) или мультиполярные (аксон один, а дендритов - несколько).

Классификация нервных клеток

Какую еще классификацию имеет нервная ткань? Нейроны в ней могут выполнять разные функции, поэтому среди них выделяют ряд типов, в том числе:

  • Афферентные нервные клетки, они же чувствительные, центростремительные. Эти клетки имеют небольшие размеры (относительно других клеток такого же типа), обладают разветвленным дендритом, связаны с функциями рецепторов сенсорного типа. Они расположены вне центральной нервной системы, имеют один отросток, расположенный в контакте с каким-либо органом, и другой отросток, направленный в спинной мозг. Эти нейроны создают импульсы под воздействием на органы внешней среды или каких-либо изменений в самом теле человека. Особенности нервной ткани, сформированной за счет чувствительных нейронов, таковы, что в зависимости от подвида нейронов (моносенсорные, полисенсорные или бисенсорные) могут получаться реакции, как строго на один раздражитель (моно), так и на несколько (би-, поли-). К примеру, нервные клетки во вторичной зоне на коре больших полушарий (зрительная зона) могут обрабатывать как зрительные, так и звуковые раздражители. Информация идет от центра к периферии и обратно.
  • Двигательные (эфферентные, моторные) нейроны передают информацию от центральной нервной системы к периферии. У них длинный аксон. Нервная ткань образует здесь продолжение аксона в виде периферических нервов, которые подходят к органам, мышцам (гладким и скелетным) и ко всем железам. Скорость прохождения возбуждения через аксон в нейронах такого типа очень велика.
  • Нейроны вставочного типа (ассоциативные) отвечают за передачу информации от чувствительного нейрона на двигательный. Ученые предполагают, что нервная ткань человека состоит из таких нейронов на 97-99%. Их преимущественной дислокацией является серое вещество в центральной нервной системе, и они могут быть тормозными или возбуждающими в зависимости от выполняемых функций. Первые из них имеют возможность не только передать импульс, но и модифицировать его, усиливая эффективность.

Специфические группы клеток

Помимо вышеуказанных классификаций нейроны могут быть фоновоактивными (реакции проходят безо всякого внешнего воздействия), другие же дают импульс только при применении к ним какой-то силы. Отдельную группу нервных клеток составляют нейроны-детекторы, которые могут избирательно реагировать на какие-то сенсорные сигналы, которые имеют поведенческое значение, они нужны для распознавания образов. К примеру, в новой коре имеются клетки, которые особенно чувствительны к данным, описывающим что-то, схожее с лицом человека. Свойства нервной ткани здесь таковы, что нейрон дает сигнал при любом расположении, цвете, размере «лицевого раздражителя». В зрительной же системе есть нейроны, отвечающие за детекцию сложных физических явлений вроде приближения и удаления предметов, циклические движения и др.

Нервная ткань образует в ряде случаев комплексы, очень важные для работы головного мозга, поэтому некоторые нейроны имеют персональные имена в честь открывших их ученых. Это клетки Беца, очень крупные по размерам, обеспечивающие связь двигательного анализатора через корковый конец с моторными ядрами в стволах головного мозга и ряда отделов спинного мозга. Это и тормозные клетки Реншоу, наоборот, небольшие по размерам, помогающие стабилизировать мотонейроны при удержании нагрузки, к примеру, на руку и для поддержания расположения тела человека в пространстве и др.

На каждый нейрон приходится около пяти нейроглий

Строение нервных тканей включает в себя еще один элемент под названием «нейроглия». Эти клетки, которые называют еще глиальными или глиоцитами, по размерам в 3-4 раза меньше самих нейронов. В мозге человека нейроглий в пять раз больше, чем нейронов, что, возможно, обуславливается тем, что нейроглии поддерживают работу нейронов, выполняя различные функции. Свойства нервной ткани данного вида таковы, что у взрослых людей глиоциты являются возобновляющимися, в отличие от нейронов, которые не восстанавливаются. К функциональным «обязанностям» нейроглий относится создание гематоэнцефалического барьера с помощью глиоцитов-астроцитов, которые не дают проникнуть в мозг всем крупным молекулам, патологическим процессам и многим лекарствам. Глиоциты-олегодендроциты - мелкие по размерам, образуют вокруг аксонов у нейронов жироподобный миелиновый футляр, несущий защитную фукнцию. Также нейроглии обеспечивают опорную, трофическую, разграничительную и др. функции.

Другие элементы нервной системы

Некоторые ученые в строение нервных тканей включают и эпендиму - тонкий слой клеток, которые выстилают центральный канал спинного мозга и стенки желудочков мозга. В массе своей эпендима однослойна, состоит из клеток цилиндрической формы, в третьем и четвертом желудочках мозга она имеет несколько слоев. Составляющие эпендиму клетки, эпендимоциты, выполняют секреторную, разграничительную и опорную функции. Их тела вытянуты по форме и имеют на концах «реснички», за счет движения которых производится перемещение спинномозговой жидкости. В третьем желудочке головного мозга находятся особенные эпендимные клетки (танициты), которые, как полагается, передают данные о составе спинномозговой жидкости в специальный отдел гипофиза.

«Бессмертные» клетки с возрастом исчезают

Органы нервной ткани, по широко распространенному определению, включают в себя также стволовые клетки. К ним относят незрелые образования, которые могут становиться клетками разных органов и тканей (потентность), проходить процесс самообновления. По сути, развитие любого многоклеточного организма начинается со стволовой клетки (зиготы), из которой делением и дифференцировкой получаются все остальные виды клеток (у человека их более двухсот двадцати). Зигота представляет собой тотипотентную стволовую клетку, которая дает начало полноценному живому организму за счет трехмерной дифференцировки в единицы экстраэмбриональных и эмбриональных тканей (через 11 дней после оплодотворения у человека). Потомками тотипотентных клеток являются плюрипотетные, которые дают начало элементам зародыша - энтодерме, мезодерме и эктодерме. Из последней как раз и развивается нервная ткань, кожный эпителий, отделы кишечной трубки и органы чувств, поэтому стволовые клетки - это неотъемлемая и важная часть нервной системы.

Стволовых клеток в организме человека очень мало. К примеру, у эмбриона имеется одна такая клетка на 10 тысяч, а у пожилого человека в возрасте около 70 лет - одна на пять-восемь миллионов. Стволовые клетки обладают, помимо вышеуказанной потентности, такими свойствами, как «хоуминг» - способность клетки после введения прибывать в зону повреждения и исправлять сбои, выполняя утраченные функции и сохраняя теломер клетки. В других клетках при делении теломер в части своей утрачивается, а в опухолевых, половых и стволовых есть так называемая телоразмерная активность, в ходе которой концы хромосом автоматически надстраиваются, что дает бесконечную возможность клеточных делений, то есть бессмертие. Стволовые клетки, как своеобразные органы нервной ткани, обладают таким высоким потенциалом за счет избытка информационной рибонуклеиновой кислоты для всех трех тысяч генов, которые участвую в первых этапах развития зародыша.

Основными источниками стволовых клеток выступают эмбрионы, плодный материал после аборта, пуповинная кровь, костный мозг, поэтому с октября 2011 года решением Европейского суда запрещены манипуляции с эмбриональными стволовыми клетками, так как эмбрион признан человеком с момента оплодотворения. В России допущено лечение собственными стволовыми клетками и донорскими для ряда заболеваний.

Вегетативная и соматическая нервная система

Ткани нервной системы пронизывают весь наш организм. От центральной нервной системы (головной, спиной мозг) отходят многочисленные периферические нервы, соединяющие органы тела с ЦНС. Отличием периферической системы от центральной является то, что она не защищена костями и поэтому легче подвергается различным повреждениям. По функциям нервная система подразделяется на вегетативную нервную систему (отвечает за внутреннее состояние человека) и соматическую, которая осуществляет контакты с раздражителями внешней среды, получает сигналы без перехода на подобные волокна, контролируется осознанно.

Вегетативная же дает, скорее, автоматическую, непроизвольную обработку поступающих сигналов. К примеру, симпатический отдел вегетативной системы при надвигающейся опасности повышает давление человека, увеличивает пульс и уровень адреналина. Парасимпатический отдел задействован, когда человек отдыхает, - зрачки у него сужаются, сердцебиение замедляется, кровеносные сосуды расширяются, стимулируется работа половой и пищеварительной систем. Функции нервных тканей энтерального отдела вегетативной нервной системы включают в себя ответственность за все процессы пищеварения. Самым главным органом вегетативной нервной системы является гипотоламус, который связан с эмоциональными реакциями. Стоит помнить, что импульсы в вегетативных нервах могут расходиться на находящиеся рядом волокна такого же типа. Поэтому эмоции способны отчетливо влиять на состояние самых разных органов.

Нервы контролируют мышцы и не только

Нервная и мышечная ткань в теле человека тесно взаимодействуют между собой. Так, основные спинномозговые нервы (отходят от спинного мозга) шейного отдела отвечают за движение мышц у основания шеи (первый нерв), обеспечивают двигательный и сенсорный контроль (2-й и 3-й нерв). Грудобрюшной нерв, продолжающийся от пятого, третьего и второго спинномозговых нервов, управляет диафрагмой, поддерживая процессы самопроизвольного дыхания.

Спинномозговые нервы (с пятого по восьмой) в совокупности с нервом грудинной области создают плечевое нервное сплетение, которое позволяет функционировать рукам и верхней части спины. Строение нервных тканей здесь кажется сложным, однако оно высокоорганизованно и немного различается у разных людей.

В общей сложности у человека 31 пара спинномозговых нервных выходов, восемь из которых находятся в шейном отделе, 12 в грудном, по пять в поясничном и крестцовом отделах и один в копчиковом. Кроме того, выделяют двенадцать черепно-мозговых нервов, идущих от мозгового ствола (отдел мозга, продолжающий спинной мозг). Они отвечают за обоняние, зрение, движение глазного яблока, движение языка, мимику лица и др. Кроме того, десятый нерв здесь отвечает за информацию от груди и живота, а одиннадцатый за работу трапециевидной и кивательной мышц, которые находятся частично вне головы. Из крупных элементов нервной системы стоит упомянуть крестцовое сплетение нервов, поясничное, межреберные нервы, бедренные нервы и симпатический нервный ствол.

Нервная система в животном мире представлена самыми различными образцами

Нервная ткань животных зависит от того, к какому классу относится рассматриваемое живое существо, хотя в основе всего лежат опять же нейроны. В биологической систематике животным считается создание, имеющее в клетках ядро (эукариот), способное к движению и питающееся готовыми органическими соединениями (гетеротрофность). А это значит, что можно рассматривать как нервную систему кита, так и, к примеру, червя. Мозг некоторых из последних, в отличие от человеческого, содержит не более трех сотен нейронов, а остальная система представляет собой комплекс нервов вокруг пищевода. Нервные окончания, выходящие к глазам, в ряде случаев отсутствуют, так как у живущих под землей червей нет зачастую самих глаз.

Вопросы для размышлений

Функции нервных тканей в животном мире ориентированы в основном на то, чтобы их владелец успешно выживал в окружающей среде. При этом природа таит множество загадок. К примеру, зачем пиявке мозг с 32 нервными узлами, каждый из которых сам по себе мини-мозг? Почему у самого маленького в мире паука этот орган занимает до 80% полости всего тела? Встречаются и явные диспропорции в размерах самого животного и частей его нервной системы. Гигантские кальмары располагают главным «органом для размышлений» в виде «пончика» с дыркой посредине и весом около 150 грамм (при общем весе до 1,5 центнеров). И это все может быть предметом размышлений для мозга человека.