Диэлектрическая проницаемость воздуха как физическая величина.

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ, величина ε, характеризующая поляризацию диэлектриков под действием электрического поля напряжённостью Е. Диэлектрическая проницаемость входит в Кулона закон как величина, показывающая, во сколько раз сила взаимодействия двух свободных зарядов в диэлектрике меньше, чем в вакууме. Ослабление взаимодействия происходит вследствие экранирования свободных зарядов связанными, образующимися в результате поляризации среды. Связанные заряды возникают вследствие микроскопического пространственного перераспределения зарядов (электронов, ионов) в электрически нейтральной в целом среде.

Связь между векторами поляризации Р, напряжённости электрического поля Е и электрической индукции D в изотропной среде в системе единиц СИ имеет вид:

где ε 0 - электрическая постоянная. Величина диэлектрической проницаемости ε зависит от структуры и химического состава вещества, а также от давления, температуры и других внешних условий (табл.).

Для газов её величина близка к 1, для жидкостей и твёрдых тел изменяется от нескольких единиц до нескольких десятков, у сегнетоэлектриков может достигать 10 4 . Такой разброс значений ε обусловлен различными механизмами поляризации, имеющими место в разных диэлектриках.

Классическая микроскопическая теория приводит к приближённому выражению для диэлектрической проницаемости неполярных диэлектриков:

где n i - концентрация i-го сорта атомов, ионов или молекул, α i - их поляризуемость, β i - так называемый фактор внутреннего поля, обусловленный особенностями структуры кристалла или вещества. Для большинства диэлектриков с диэлектрической проницаемостью, лежащей в пределах 2-8, β = 1/3. Обычно диэлектрическая проницаемость практически не зависит от величины приложенного электрического поля вплоть до электрического пробоя диэлектрика. Высокие значения ε некоторых оксидов металлов и других соединений обусловлены особенностями их структуры, допускающей под действием поля Е коллективное смещение подрешёток положительных и отрицательных ионов в противоположных направлениях и образование значительных связанных зарядов на границе кристалла.

Процесс поляризации диэлектрика при наложении электрического поля развивается не мгновенно, а в течение некоторого времени τ (времени релаксации). Если поле Е изменяется во времени t по гармоническому закону с частотой ω, то поляризация диэлектрика не успевает следовать за ним и между колебаниями Р и Е появляется разность фаз δ. При описании колебаний Р и Е методом комплексных амплитуд диэлектрическую проницаемость представляют комплексной величиной:

ε = ε’ + iε",

причём ε’ и ε" зависят от ω и τ, а отношение ε"/ε’ = tg δ определяет диэлектрические потери в среде. Сдвиг фаз δ зависит от соотношения τ и периода поля Т = 2π/ω. При τ << Т (ω<< 1/τ, низкие частоты) направление Р изменяется практически одновременно с Е, т. е. δ → 0 (механизм поляризации «включён»). Соответствующее значение ε’ обозначают ε (0) . При τ >> Т (высокие частоты) поляризация не успевает за изменением Ε, δ → π и ε’ в этом случае обозначают ε (∞) (механизм поляризации «отключён»). Очевидно, что ε (0) > ε (∞) , и в переменных полях диэлектрическая проницаемость оказывается функцией ω. Вблизи ω = l/τ происходит изменение ε’ от ε (0) до ε (∞) (область дисперсии), а зависимость tgδ(ω) проходит через максимум.

Характер зависимостей ε’(ω) и tgδ(ω) в области дисперсии определяется механизмом поляризации. В случае ионной и электронной поляризаций при упругом смещении связанных зарядов изменение Р(t) при ступенчатом включении поля Е имеет характер затухающих колебаний и зависимости ε’(ω) и tgδ(ω) называются резонансными. В случае ориентационной поляризации установление Р(t) носит экспоненциальный характер, а зависимости ε’(ω) и tgδ(ω) называются релаксационными.

Методы измерения диэлектрической поляризации основаны на явлениях взаимодействия электромагнитного поля с электрическими дипольными моментами частиц вещества и различны для разных частот. В основе большинства методов при ω ≤ 10 8 Гц лежит процесс зарядки и разрядки измерительного конденсатора, заполненного исследуемым диэлектриком. При более высоких частотах используются волноводные, резонансные, мультичастотные и другие методы.

В некоторых диэлектриках, например сегнетоэлектриках, пропорциональная зависимость между Р и Ε [Ρ = ε 0 (ε ‒ 1)Е] и, следовательно, между D и Е нарушается уже в обычных, достигаемых на практике электрических полях. Формально это описывается как зависимость ε(Ε) ≠ const. В этом случае важной электрической характеристикой диэлектрика является дифференциальная диэлектрическая проницаемость:

В нелинейных диэлектриках величину ε диф измеряют обычно в слабых переменных полях при одновременном наложении сильного постоянного поля, а переменную составляющую ε диф, называют реверсивной диэлектрической проницаемостью.

Лит. смотри при ст. Диэлектрики.

Электрическая проницаемость

Электрическая проницаемость является величиной, характеризующей емкость диэлектрика, помещенного между обкладками конденсатора. Как известно, емкость плоского конденсатора зависит от величины площади обкладок (чем больше площадь обкладок, тем больше емкость), расстояния между обкладками или толщины диэлектрика (чем толще диэлектрик, тем меньше емкость), а также от материала диэлектрика, характеристикой которого служит электрическая проницаемость.

Численно электрическая проницаемость равна отношению емкости конденсатора с каким-либо диэлектриком такого же воздушного конденсатора. Для создания компактных конденсаторов необходимо применять диэлектрики с высокой электрической проницаемостью. Электрическая проницаемость большинства диэлектриков составляет несколько единиц.

В технике получены диэлектрики с высокой и со сверхвысокой электрической проницаемостью. Основная их часть - рутил (двуокись титана).

Рисунок 1. Электрическая проницаемость среды

Угол диэлектрических потерь

В статье "Диэлектрики " мы разбирали примеры включения диэлектрика в цепи постоянного и переменного тока. Оказалось, что реальном диэлектрике при работе его в электрическом поле, образованным переменным напряжением, происходит выделение тепловой энергии. Мощность, поглощаемая при этом, называется диэлектрическими потерями. В статье "Цепь переменного тока, содержащая емкость" будет доказано, что в идеальном диэлектрике емкостной ток опережает напряжение на угол, меньший 90°. В реальном диэлектрике емкостной ток опережает напряжение на угол, меньший 90°. На уменьшение угла оказывает влияние ток утечки, называемый иначе током проводимости.

Разность между 90° и углом сдвига между напряжением и током, проходящим в цепи с реальным диэлектриком, называется углом диэлектрических потерь или углом потерь и обозначается δ (дельта). Чаще определяют не сам угол, а тангенс этого угла - tg δ.

Установлено, что диэлектрические потери пропорциональны квадрату напряжения, частоте переменного тока, емкости конденсатора и тангенсу угла диэлектрических потерь.

Следовательно, чем больше тангенс угла диэлектрических потерь, tg δ, тем больше потери энергии в диэлектрике, тем хуже материал диэлектрика. Материалы с относительно большим tg δ (порядка 0,08 - 0,1 и более) являются плохими изоляторами. Материалы с относительно малым tg δ (порядка 0,0001) являются хорошими изоляторами.

Как известно, окружающий нас воздух представляет собой комбинацию нескольких газов, поэтому является хорошим диэлектриком. В частности, благодаря этому во многих случаях удается избежать необходимости организации дополнительных изолирующих слоев какого-либо материала вокруг проводника. Сегодня мы поговорим о том, проницаемость воздуха. Но сначала, пожалуй, начнем с определения того, что именно понимают под термином «диэлектрик».

Все вещества в зависимости от способности проводить электрический ток условно подразделяются на три больших группы: проводники, полупроводники и диэлектрики. Первые оказывают минимальное сопротивление направленному прохождению по ним заряженных частиц. Самая большая их группа - это металлы (алюминий, медь, железо). Вторые проводят ток при определенных условиях (кремний, германий). Ну а третьих настолько велико, что ток по ним не проходит. Яркий пример - воздух.

Что же происходит, когда вещество попадает в зону действия электрического поля? Для проводников ответ очевиден - возникает электрический ток (разумеется, при наличии замкнутого контура, обеспечивающего «путь» для частиц). Так происходит благодаря тому, что изменяется способ взаимодействия зарядов. Совершенно другие процессы происходят при воздействии поля на диэлектрический материал. При изучении взаимодействия частиц, обладающих было замечено, что сила взаимодействия зависит не только от численного значения заряда, но и от среды, разделяющей их. Это важная характеристика получила название «диэлектрическая проницаемость вещества». Фактически, она представляет собой поправочный коэффициент, так как не имеет размерности. Определяется как отношение значения силы взаимодействия в вакууме к значению в какой-либо среде. Физический смысл термина «диэлектрическая проницаемость» следующий: данная величина показывает степень ослабления электрического поля диэлектрическим материалом по сравнению с вакуумом. Причина данного явления кроется в том, что молекулы материала затрачивают энергию поля не на проводимость частиц, а на поляризацию.

Известно, что воздуха равна единице. Много это или мало? Давайте разберемся. Сейчас нет необходимости самостоятельно рассчитывать числовое значение проницаемости для большинства распространенных веществ, так как все эти данные приводятся в соответствующих таблицах. Кстати, именно из подобной таблицы взято равное единице. Диэлектрическая проницаемость воздуха почти в 8 раз меньше, чем у, например, гетинакса. Зная это число, а также значение зарядов и расстояние между ними, можно вычислить силу их взаимодействия, при условии разделения воздушной средой или пластиной гетинакса.

Формула для силы следующая:

F = (Q1*Q2) / (4* 3.1416* E0*Es*(r*r)),

где Q1 и Q2 - значения зарядов; E0 - проницаемость в вакууме (константа, равная 8.86 в степени -12); Es - диэлектрическая проницаемость воздуха («1» или значение для любого другого вещества, по таблице); r - расстояние между зарядами. Все размерности берутся в соответствии с системой СИ.

Не следует путать два разных понятия - «магнитная проницаемость воздуха» и его же диэлектрическая проницаемость. Магнитная является еще одной характеристикой любого вещества, также представляющей собой коэффициент, однако его смысл другой - взаимосвязь и значения в определенном веществе. В формулах используется эталонный показатель - магнитная проницаемость для чистого вакуума. Как первое, так и второе понятия используются для выполнения расчетов различных электротехнических устройств.

Уровень поляризуемости вещества характеризуется особенной величиной, которую называют диэлектрическая проницаемость. Рассмотрим, что это за величина.

Допустим, что напряженность однородного поля между двух заряженных пластин в пустоте равна Е₀. Теперь заполним промежуток между ними любым диэлектриком. которые появятся на границе между диэлектриком и проводником благодаря его поляризации, частично нейтрализуют воздействие зарядов на пластинах. Напряженность Е данного поля станет меньше напряженности Е₀.

Опыт обнаруживает, что при последовательном заполнении промежутка между пластинами равными диэлектриками, величины напряженности поля окажутся разными. Поэтому зная величину отношения напряженности электрополя между пластинами в отсутствие диэлектрика Е₀ и при наличии диэлектрика Е, можно определять его поляризуемость, т.е. его диэлектрическую проницаемость. Эту величину принято обозначать греческой буквой ԑ (эпсилон). Следовательно, можно написать:

Диэлектрическая проницаемость демонстрирует, во сколько раз данных зарядов в диэлектрике (однородном) будет меньше, чем в вакууме.

Уменьшение силы взаимодействия между зарядами вызвано процессами поляризации среды. В электрическом поле электроны в атомах и молекулах уменьшаются по отношению к ионам, и возникает Т.е. те молекулы, у которых есть свой дипольный момент (в частности молекулы воды), ориентируются в электрическом поле. Эти моменты создают собственное электрическое поле, противодействующее тому полю, которое вызвало их появление. В результате суммарное электрическое поле уменьшается. В небольших полях это явление описывают с помощью понятия диэлектрической проницаемости.

Ниже приведена диэлектрическая проницаемость в вакууме различных веществ:

Воздух……………………………....1,0006

Парафин…………………………....2

Плексиглас (оргстекло)……3-4

Эбонит……………………………..…4

Фарфор……………………………....7

Стекло…………………………..…….4-7

Слюда……………………………..….4-5

Шелк натуральный............4-5

Шифер..............................6-7

Янтарь…………………………...……12,8

Вода………………………………...….81

Данные значения диэлектрической проницаемости веществ относятся к окружающим температурам в пределах 18—20 °С. Так, диэлектрическая проницаемость твердых тел незначительно изменяется с температурой, исключением являются сегнетоэлектрики.

Напротив, у газов она уменьшается из-за повышения температуры и возрастает в связи с увеличением давления. В практике принимается за единицу.

Примеси в небольших количествах мало влияют на уровень диэлектрической проницаемости жидкостей.

Если два произвольных точечных заряда поместить в диэлектрик, то напряженность поля, создаваемого каждым из этих зарядов в точке нахождения другого заряда, уменьшается в ԑ раз. Из этого следует, что сила, с которой эти заряды взаимодействуют один с другим, также в ԑ раз меньше. Поэтому для зарядов, помещенных в диэлектрик, выражается формулой:

F = (q₁q₂)/(4πԑₐr²),

где F — является силой взаимодействия, q₁ и q₂, — величины зарядов, ԑ — является абсолютной диэлектрической проницаемостью среды, г — дистанция между точечными зарядами.

Значение ԑ численно можно показать в относительных единицах (по отношению к значению абсолютной диэлектрической проницаемости вакуума ԑ₀). Величина ԑ = ԑₐ/ԑ₀ называют относительной диэлектрической проницаемостью. Она раскрывает, во сколько раз взаимодействие между зарядами в бесконечной однородной среде слабее, чем в вакууме; ԑ = ԑₐ/ԑ₀ часто называют комплексная диэлектрическая проницаемость. Численное значение величины ԑ₀, а также ее размерность зависимы от того, какая система единиц выбрана; а значение ԑ - не зависит. Так, в системе СГСЭ ԑ₀ = 1 (эта четвертая основная единица); в системе СИ диэлектрическая проницаемость вакуума выражается:

ԑ₀ = 1/(4π˖9˖10⁹) фарада/метр = 8,85˖10⁻¹² ф/м (в этой системе ԑ₀ является производной величиной).

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ

Диэлектрическая проницаемость среды ε c есть величина, характеризующая влияние среды на силы взаимодействия электрических полей. Различные среды имеют различные значения ε c .

Абсолютная диэлектрическая проницаемость вакуума называется электрической постоянной ε 0 =8,85 10 -12 ф/м.

Отношение абсолютной диэлектрической проницаемости среды к электрической постоянной называют относительной диэлектрической проницаемостью

т.е. относительная диэлектрическая проницаемость ε - это величина показывающая, во сколько раз абсолютная диэлектрическая проницаемость среды больше электрической постоянной. Величина ε размерности не имеет.

Таблица 1

Относительная диэлектрическая проницаемость изоляционных материалов

Как видно из таблицы у большинства диэлектриков ε = 1-10и мало зависит от электрических условий и температуры среды.

Существует группа диэлектриков, называемых сегнетоэлектриками , в которых ε может достигать значений до 10 000, причем ε сильно зависит от внешнего поля и температуры. К сегнетоэлектрикам относятся титанат бария, титанат свинца, сегнетова соль и др.

Контрольные вопросы

1. Каково строение атома алюминия, меди?

2. В каких единицах измеряются размеры атомов и их частиц?

3. Какой электрический заряд имеют электроны?

4. Почему в обычном состоянии вещества электрически нейтральны?

5. Что называется электрическим полем и как оно условно изображается?

6. От чего зависит сила взаимодействия между электрическими зарядами?

7. Почему одни материалы являются проводниками, а другие изоляторами?

8. Какие материалы относятся к проводника, а какие к изоляторам?

9. Как можно зарядить тело положительным электричеством?

10. Что называется относительной диэлектрической проницаемостью?