Минералокортикоиды. Активация ренин-ангиотензин-альдостероновой системы (раас) Побочные эффекты ингибиторов апф

В организме.

Энциклопедичный YouTube

    1 / 3

    ✪ Общий обзор ренин-ангиотензин-альдостероновой системы. Клетки и гормоны

    ✪ Ренин - ангиотензин - альдостероновая система

    ✪ ЮГА и РААС (почки 5)

    Субтитры

    Артериальное давление контролируется очень и очень сложным механизмом. Поговорим о ренин-ангиотензин-альдостероновой системе. Ренин-ангиотензин-альдостероновая система. В этом видеоролике мы подробно рассмотрим клетки и гормоны, образующие эту самую систему. Сразу оговорим следующее. Эта система состоит из различных клеток, которые я рисую в виде вот таких домиков. А выделяемые ими различные гормоны я рисую в виде маленьких оранжевых человечков. Человечек - гормон, домик - клетка. Ключевую роль в этой системе играют юкстагломерулярные клетки. Юкстагломерулярные клетки. Вот они. Они расположены в почках, но не диффузно, а в сосудах. При ближайшем рассмотрении это очень сильно измененные гладкомышечные клетки. Это на самом деле гладкомышечные клетки. Я напишу это, чтобы вы не забыли. Разумеется, это в почках. Может, не очень похоже, но так я обозначил почку. Эти клетки выделяют гормон под названием ренин. Зачем? Ренин повышает артериальное давление. Если юкстагломерулярные клетки выявляют снижение давления, они начинают выделять ренин. Это первая причина выделения, низкое давление... низкое давление. А всего таких причин три. Я их напишу. Итак, вторая причина - симпатическая стимуляция юкстагломерулярных клеток. Итак, вторая причина - симпатическая стимуляция юкстагломерулярных клеток. Симпатическая нервная система бывает активна в стрессовые моменты, например, при попытке уйти от погони или, например, в драке. Или при кровотечении после автокатастрофы. В общем, это происходит при любых сильных стрессах. В ответ на такой стресс выделяется ренин. Вторая причина - симпатическая стимуляция. Аксоны симпатических нейронов подходят к юкстагломерулярным клеткам. Кроме того, отдельно от юкстагломерулярного комплекса, в почках есть плотное пятно. Плотное пятно. Оно также является одной из частей почки. Плотное пятно располагается в дистальном извитом канальце нефрона. Дистальный извитой каналец нефрона. Клетки плотного пятна чувствительны к уровню натрия. При низком артериальном давлении через клубочек проходит мало крови. Мало крови проходит через нефрон. Реабсорбируется много соли. Когда моча поступает в дистальный извитой каналец, клетки плотного пятна обнаруживают в ней недостаток соли. А так как причина в низком артериальном давлении, они стимулируют юкстагломерулярные клетки, чтобы те подняли давление. Сигнал передают простагландины, являющиеся медиаторами. Простагландины. В отличие от ренина, простагландины обладают местным действием. Простагландины используют многие клетки организма. Итак, третьей причиной выделения ренина является низкая концентрация соли в моче, определяемая в нефроне, а именно - в дистальном извитом канальце. Вот эти три главные причины. Все это происходит в почках. Всё это именно там. В регуляции давления участвуют и другие органы. Следующей в списке идет печень. Клетки печени, естественно, также выделяют свой гормон. Итак, клетки печени тоже выделяют свой гормон. И гормон этот называется ангиотензиноген. Ангиотензиноген сам по себе неактивен и бесполезен. Нарисуем лицо человека покрупнее, пусть он будет спящим. Итак, гормон циркулирует в кровотоке, но неактивен - это важно. Для его активации нужен другой гормон, взаимодействующий с ним. Нужен ренин. В результате ангиотензин превращается в ангиотензин I. Ренин - это фермент, отщепляющий большую часть молекулы ангиотензиногена. В результате получается активный ангиотензин I. Ангиотензин I. И вот человек просыпается. В кровеносных сосудах, само собой, тоже есть клетки, выстилающие их изнутри. Вот они. Это эндотелий, внутренняя выстилка кровеносного сосуда. Раньше считалось, что это происходит в легких. Но все больше данных о том, что в этом участвуют и другие сосуды также. Эндотелий в сосудах по всему телу преобразует этот гормон, ангиотензин I, с получением ангиотензина II. Ангиотензин II. Это тоже гормон. Я нарисую его полностью проснувшимся, нашего человечка потому, что ангиотензин II полностью активен. Это очень и очень активный гормон. Вот что он делает. У этого гормона несколько мишеней. Я нарисую их стрелками: 1, 2, 3, 4. Этот гормон, ангиотензин II действует на 4 типа клеток. Но в первую очередь он поднимает артериальное давление. Вот 4 типа клеток-мишеней, изображённые вот здесь. Первый из них - гладкая мускулатура сосудов. Гладкая мускулатура сосудов. По всему телу, не только в почках. Гормон заставляет эту мускулатуру сокращаться, повышая сопротивление. Сужение просвета сосудов увеличивает сопротивление кровотоку. Это первый эффект. Также ангиотензин действует на клетки почек, вот здесь, заставляя их реабсорбировать больше воды с увеличением объема. Увеличивается объем циркулирующей крови. При этом увеличивается систолический объем. Сопротивление растет, выброс увеличивается. Вот уже два эффекта ангиотензина II. Еще он действует на железы. Я нарисую гипофиз, он расположен в основании мозга. Это железа, поэтому она также выделяет различные гормоны. Вот еще один гормон, он находится здесь. Вот это всё гормоны. Это АДГ, антидиуретический гормон. В целом, АДГ повторяет эффекты ангиотензина II. Он повышает сосудистое сопротивление и усиливает реабсорбцию воды с увеличением объема крови. Последняя мишень - надпочечники. Вот надпочечник. Он так называется, потому что находится на почке сверху. Это железа, соответственно она выделяет гормоны. Вот один из гормонов. Альдостерон. Альдостерон. Альдостерон в чем-то похож на антидиуретический гормон. Он тоже его чем-то напоминает. Он заимствует органы-мишени у ангиотензина II. Альдостерон действует на почки, увеличивая объем крови. АДГ, как говорилось ранее, действует на почки и гладкие мышцы. Вернемся наверх, там есть кое-что важное и интересное. Как вы помните, все началось с почек. В них и плотное пятно, и юкстагломерулярный аппарат, и нервные окончания. Почки также один из главных органов-мишеней. С почек началось, почками и заканчивается. А что насчет гладкой мускулатуры? Гладкая мускулатура по всему телу также является мишенью. Я просто хотел подчеркнуть роль почек. Есть еще кое-что. Говоря о системе РААС, имеют в виду конкретные механизмы. Говорят, к примеру, вот об этом гормоне. Об ангиотензиногене и ангиотензине I. И также об ангиотензине II и его мишенях: гладкой мускулатуре, железах (гипофизе и надпочечниках) и о почках. Это все - одна система. Запомните, что в ней участвуют минимум 4 типа клеток-мишеней. А альдостерон обладает значительным влиянием на почки. Вот что я хотел показать: в процесс вовлечено много различных гормонов со своими мишенями. А почки играют главную роль в регуляции давления. Subtitles by the Amara.org community

Компоненты системы

  • Проренин

Компоненты ренин-ангиотензиновой системы

Ренин-ангиотензин альдестероновый каскад начинается с биосинтеза препрорениновой из рениновой мРНК в юкстагломерулярных клетках и превращается в проренин путём отщепления 23 аминокислот . В эндоплазматическом ретикулуме проренин подвергается гликозилированию и приобретает 3-D структуру, которая характерна для аспартатных протеаз . Готовая форма проренина состоит из последовательности включающей 43 остатка присоединённых к N-концу ренина, содержащего 339-341 остаток . Предполагается, что дополнительная последовательность проренина (prosegment) связана с ренином для предотвращения взаимодействия с ангиотензиногеном. Большая часть проренина свободно выбрасывается в системный кровоток путём экзоцитоза , но некоторая доля превращается в ренин путём действия эндопептидаз в секреторных гранулах юкстагломерулярных клеток. Ренин , образуемый в секреторных гранулах в дальнейшем выделяется в кровоток, но этот процесс жёстко контролируется давлением , Ang 2, NaCl, через внутриклеточные концентрации ионов кальция. Поэтому у здоровых людей объём циркулирующего проренина в десять раз выше концентрации активного ренина в плазме. Однако, все же остаётся не понятным, почему концентрация неактивного предшественника настолько высока.

Контроль секреции ренина

Активная секреция ренина регулируется четырьмя независимыми факторами:

  1. Почечным барорецепторным механизмом в афферентной артериоле, который улавливает изменение почечного перфузионного давления.
  2. Изменениями уровня NaCl в дистальном отделе нефрона. Этот поток измеряется как изменение концентрации Cl - клетками плотного пятна дистального извитого канальца нефрона в области, прилегающей к почечному тельцу.
  3. Стимуляцией симпатическими нервами через бета-1 адренергические рецепторы.
  4. Механизмом отрицательной обратной связи, реализованным через прямое действие ангиотензина 2 на юкстагломерулярные клетки. Секрецию ренина активирует снижение перфузионного давления или уровня NaCl и повышение симпатической активности. Ренин также синтезируется и в других тканях, включая мозг, надпочечник, яичники, жировая ткань, сердце и сосудах.

Контроль секреции ренина - определяющий фактор активности РААС.

Механизм действия ренин-ангиотензиновой системы

Ренин регулирует начальный, ограничивающий скорость, этап РААС путём отщепления N-концевого сегмента ангиотензиногена для формирования биологически инертного декапептида ангиотензина 1 или Ang-(1-10). Первичный источник ангиотензиногена - печень . Долговременный подъём уровня ангиотензиногена в крови , который происходит во время беременности , при синдроме Иценко-Кушинга или при лечении глюкокортикоидами , может вызвать гипертензию , хотя и существуют данные о том, что хроническое повышение концентрации ангиотензина в плазме частично компенсируется снижением секреции ренина . Неактивный декапептид Ang 1 гидролизуется ангиотензинпревращающим ферментом (АПФ) , который отщепляет С-концевой дипептид и, таким образом, формируется октапептид Ang 2 , биологически активный, мощный вазоконстриктор. АПФ представляет собой экзопептидазу и секретируется главным образом лёгочным и почечным эндотелием, нейроэпителиальными клетками . Ферментативная активность АПФ заключается в повышении вазоконстрикции и снижении вазодилятации.

Новые данные о компонентах ренин-ангиотензиновой системы

Хотя Ang2 наиболее биологически активный продукт РААС, существуют данные, что другие метаболиты агиотензинов 1 и 2 могу также могут иметь значительную активность. Ангиотензин 3 и 4 (Ang 3 & Ang 4) формируются путём отщепления аминокислот с N-конца от Ангиотензина 2 вследствие действия аминопептидаз А и N. Ang 3 и 4 наиболее часто вырабатываются в тканях с высоким содержанием этих ферментов , например, в мозге и почках. Ang 3 , гептапептид образующий в результате отщепления аминокислоты с N-конца, наиболее часто он встречается в центральной нервной системе, где Ang III играет важную роль в поддержании кров давления. Ang IV гексапептид является результатом дальнейшего ферментативного расщепления AngIII. Предполагается, что Ang 2 и 4 работают кооперативно. В качестве примера можно привести повышение кровяного давления в мозгу , вызываемое действием этих ангиотензинов на AT1-рецептор . Причём этот гемодинамический эффект Ang 4 требует наличия как Ang2 так и самого AT1- рецептора. Пептиды , получаемые отщеплением аминокислот с С-конца, могут также иметь биологическую активность. Например, Ang-(1-7), гептапептидный фрагмент ангиотензина 2, может образовываться как из Ang2 так и из Ang1 действием ряда эндопептидаз или действием карбоксипептидаз (например, гомологом АПФ, названным АПФ2) конкретно на Ang2. В отличие от АПФ, АПФ2 не может участвовать в реакции превращения Ang1 в Ang2 и его активность не подавляется ингибиторами ACE (ACEIs). Ang-(1-7) реализующий свои функции через определённые рецепторы, впервые был описан как вазодилататор и как натуральный ингибитор ACEI. Ему также приписываются и кардиопротекторные свойства. АПФ2 может также отщеплять одну аминокислоту с С-конца, результатом такого действия является Ang-(1-9), пептид с неизвестными функциями., сосудистая и сердечная

  • Второй тип AT2-R широко представлен в период эмбрионального развития мозга , почек затем же в период постнатального развития количество этого рецептора падает. Имеются данные, что, несмотря на низкий уровень экспрессии во взрослом организме, AT2 рецептор может выступать в качестве посредника в процессе вазодилятации и также оказывать антипролиферативный и антиапоптотичекие эффекты в гладких мышцах сосудов и угнетать рост кардиомиоцитов . В почках, как предполагается, активация AT2 влиять на реабсорбцию в проксимальных извитых канальцах и стимулировать реакции превращения простагландина E2 в простагландин F2α.2,7. Однако, важность некоторых из этих At2 связанных действий остаётся неизученной.
  • Функции третьего типа (AT3) рецепторов не до конца изучены.
  • Четвёртый тип рецепторов (AT4) участвует в выделении ингибитора активатора плазминогена (под действием ангиотензина 2, а также 3 и 4). Предполагается, что эффекты характерные для Ang 1-7, включая вазодилятацию, натрийурез, снижение пролиферации, и защита сердца, реализуются через уникальные рецепторы, которые не связываются с Ang 2, такими как MAS рецепторы.
  • Также нужно отметить, что последние данные указывают на существование высокоаффинных поверхностных рецепторов, которые связывают как ренин, так и проренин. Они находятся в тканях мозга, сердца, плаценты и почек (в поэндотелиальной гладкой мускулатуре и мезангие). Эффекты таких рецепторов направлены на локальное увеличение выработки Ang2 и запуска внеклеточных киназ, таких как, MAP -киназ, к которым относится ERK1 и ERK2. Эти данные пролили свет на Ang2-независимые механизмы клеточного роста, активируемые ренином и проренином.

    Влияние на прочие секреции

    Как отмечалось ранее Ang2, через AT1 рецепторы стимулирует выработку альдостерона клубочковой зоной надпочечника. Альдостерон наиболее важный регулятор K+- Na+ баланса и таким образом играет важную роль в контроле объёма жидкостей. Он увеличивает реабсорцию натрия и воды в дистальных извитых канальцах и собирательных трубочках (а также в толстой кишке и слюнных и потовых железах) и таким образом вызывает экскрецию ионов калия и водорода. Ангиотензин 2 вместе с внеклеточным уровнем ионов калия - наиболее значимые регуляторы альдостерона, но синтез Ang2 также может быть вызван АКТГ, норадреналином, эндотелином, серотонином, а ингибирован АНП и NO. Также важно отметить, что Ang 2 важный фактор трофики клубочковой зоны надпочечников, которая без его наличия может атрофироваться.

    Ренин-ангиотензин-альдостероновая система (РААС) отвечает за норму объема экстрацеллюлярной жидкости, участвует в формировании стенок сосудов и обеспечивает уровень перфузии тканей. РААС непосредственно влияет на сердечно-сосудистую систему, нормализует артериальное давление и поддерживает содержание натрия и калия в норме.

    В процессе участвует ренин (энзим), альдостерон (стероидный гормон) и ангиотензин II (пептидный гормон). Схема Ренин-ангиотензин-альдостероновой системы (РААС), представленная ниже, поможет понять принцип функционирования.

    Основные цели РААС

    Основной задачей для активации Ренин-ангиотензин-альдостероновой системы (РААС) является:

    • Обеспечение достаточного кровотока в сосудах путем поддержания артериального давления, для функционирования печени, сердечно-сосудистой системы и сердца, почек, головного мозга.
    • Выступает в роли «скорой помощи» при потере крови, при инфаркте и при резком снижении давления.
    • Регулирует почечный и сосудистый гомеостаз, развивает процессы компенсаторного характера.

    Длительная активация ренин-ангиотензин-альдостероновой системы может вызвать патологические явления в виде общего периферического сопротивления сосудов, недостаточный вывод жидкости из организма, избыток вырабатываемой крови, образованию периваскулярного и миокардиального фиброза.

    Компонент системы ренин

    Первым в звеньевой цепочке ренин-ангиотензин-альдостероновой системы, находится ренин, его производный элемент проренин, получается путем биосинтеза препрорениновой и рениновой РНК в юкстагломерулярных клетках. В дальнейшей подвергается глюкозелированию с последующим отщеплением аминокислот.

    После деления, часть проренина выбрасывается в кровоток по принципу экзоцитоза, остаточная превращается в ренин, секретируясь юкстагломерулярными клетками аппарата почки, путем эндопептидаза. Образованный ренин в гранулах секреции юкстагломерулярной клетки в дальнейшем, также попадает в кровоток. Уровень производства ренина и дальнейшего поступления в кровь контролируется:

    • артериальным давлением;
    • химическими элементами NaClи Anq2;
    • концентрацией внутри клетки ионов калия.

    Ренин-ангиотензин-альдостероновая система призвана реагировать на сокращение объема воды и наличия натрия в организме при кровотечении. Потеря крови снижает давление в артериолах гломерулярных клубочков почек. Клетки стенок артериол улавливают спад натяжения, выделяют в капиллярную кровь ренин.

    Большая часть регуляторов выработки ренина работает через почечные барорецепторы, под действием показателя состояния центральной нервной системы. На количество ренина влияет положение тела, переход из горизонтального положения в вертикальное или положение сидя, выработка энзима увеличивается. Это объясняется тем, что в симпатической части ЦНС повышается тонус и рефлекторно передается сигнал юкстагломерулярным клеткам.

    В крови ренин воздействуя на ангиотензиноген, выделяет из него декапептид ангиотензин I, этот гормон не выполняет значимой функции в организме, но служит фундаментом для образования ангиотезина II. В процессе биохимической реакции, ангиотензин I, при помощи расщепления ангиотензинпревращающим ферментом (АПФ) переходит в ангиотезин II.

    Ангиотезин II является центральным звеном ренин-ангиотензин-альдостероновой системы, основной задачей служит вазоконстрикторное воздействие на стенки артерий и ограниченное действие на центральную нервную систему. К рецепторам, участвующих в образование ангиотезина II, относятся следующие подтипы.

    Агиотезин I-R (АТ 1-R) основа производного процесса, дает толчок основному количеству функций для реализации физиологически установленных норм ангиотезина II. Таким образом стимулируется выработка альдостерона надпочечниками, производится действие на симпатическую нервную систему. АТ 1-R мобилизирует ангиотезин II на рост клеток, и реагирование на воспалительный процесс. Влияние на сердечно-сосудистую систему, проявляется:

    • повышением артериального давления;
    • увеличением частоты сокращения сердечной мышцы;
    • наличием сердечной и сосудистой гипертонии.

    Следующий рецепторный тип АТ2-R к ангиотензину II, проявляет активность на первых стадиях развития эмбриона, при формировании мозга. На дальнейших этапах роста плода количество рецептора значительно сокращается.

    Производный ангиотезина II – ангиотензиноген синтезируется печенью и под действием ренина, делится на ангиотезин I не активный декапептид, и на активный ангиотезин II, путем ферментативного воздействия АПФ. Функция активного октапептида ангиотезина II:

    • путем сужения артериол повышает артериальное давление;
    • контролирует выработку ренина юкстагломерулярными клетками;
    • увеличивает сокращение миокарда;
    • контролирует содержание натрия, ослаблением фильтрации в почках;
    • поддержание водного баланса, путем формирования питьевого поведения.

    Одной из важных задач ангиотезина II, воздействие на рецепторы центральной нервной системы, для активации биосинтеза в надпочечниках по выработке альдостерона. И путем обратной связи, всасывание ионов натрия почками.

    Альдостерон

    Синтез основного минералокортикоида происходит в гломерулярной зоне надпочечников, под воздействием калия и ангиотезина II и действует на мембранные рецепторы клеток ткани различных органов. Хотя основным производным альдостерона является ангиотезин II, сам гормон не участвует в производстве кортизола.

    Функции альдостерона направлены на сдерживание натрия в почках и выведение лишнего количества натрия и калия из них. А также альдестерон играет немаловажную роль в ренин-ангиотензин-альдостероновой системе (РААС) отвечая:

    • за защиту организма в неординарных ситуациях;
    • стабилизирует уровень сахара в крови;
    • сужение стенок сосуда, что делает невозможным понижение артериального давления, путем стабилизации кровяного потока.

    Помимо регуляции артериального давления, альдостерон контролирует норму водно-солевого баланса. Но напрямую действуя на стенки сосудов, может вызвать нарушение функции эндотелия. Альдостерон способен спровоцировать воспаления стенки сосудов, активизировать моноциты крови и вызвать нарушение в почках и миокарде.

    При повышенной выработке альдостерона или недостаточном количестве гормона необходимо медикаментозное лечение.

    играет центральную роль в развитии ренальной гипертензии. Любое повреждение паренхимы почек (склероз, кисты, рубцы, микроангиопатические повреждения, тубуло- интерстициальное или гломерулярное воспаление) вызывает нарушение перфузии гломерул и повышает секрецию ренина.

    Гиперренинемия ведет к ангиотензин II-зависимой вазоконстрикции, а также альдостерон-зависимой задержке натрия. Таким образом, повышается и общее периферическое сопротивление, и объем циркулирующей крови. У 90% больных с тХПН АГ носит объем- зависимый характер и у 10% ведущим является повышение активности РАС. Кроме того, высокий уровень ангиотензина II запускает процессы воспаления, гипертрофии миокарда, эндотелиального повреждения, пролиферацию мезангиальных клеток и интерстициальный фиброз.

    Существенное влияние на объем внеклеточной жидкости и АД оказывает не контролируемое потребление натрия с пищей. Задержка натрия при ХБП может быть обусловлена как снижением СКФ, так и повышением его реабсорбции в канальцах, не зависящим и не зависящим от активации РААС (при гломерулонефритах с нефротическим синдромом).

    У детей с АГ на диализе диурез обычно меньше, чем у нормотензивных пациентов того же возраста, а междиализная прибавка веса умеренно коррелирует с междиализным повышением АД (r=0,41). Нефрэктомия у детей на диализе с ренинзависимой АГ снижает среднее АД, а гипертензия приобретает объем-зависимый характер.

    Важным механизмом АГ является повышение активности симпатической нервной системы, отмечающееся у больных с ХБП и особенно при ХПН. Лежащие в основе этого феномена механизмы пока не ясны и могут включать афферентные сигналы от почек, допаминергические нарушения и аккумуляцию лептина. Не только блокада b-рецепторов, но и ингибиция ангиотензин- превращающего фермента (АПФ) может уменьшать симпатическую гиперактивацию при ХБП. Представляется, что ренальная ишемия любого происхождения (в том числе локальная) вызывает симпатическую гиперактивацию.

    Препараты, используемые в терапии больных при ХБП, могут вызывать ятрогенную артериальную гипертензию. Например, применение эритропоэтина в течение нескольких недель приводит к подъему АД у 20% больных. Глюкокортикоиды вызывают задержку жидкости за счет их минералокортикоидной активности. Циклоспорин А вызывает повышение гломерулярных афферентных артериол и гиперплазии юкстагломерулярного аппарата с последующим повышенным высвобождением ренина и ангиотензина II.

    Таким образом, все дети с ХБП находятся в группе риска по развитию АГ. К группе высокого риска относятся больные с тХПН, реципиенты почечного трансплантата, больные с быстропрогрессирующим гломерулонефритом.

    Ранняя диагностика АГ представляется чрезвычайно важной задачей для предупреждения отдаленных последствий гипертензии. С этой целью необходимо применение активных скрининговых методов, так как клинические симптомы АГ часто отсутствуют.

    Простейшим скрининговым методом выявления АГ является регулярное измерение артериального давления, по меньшей мере, при каждом осмотре пациента врачом. Диагноз АГ правомерен, если не менее чем при 3-х клинических измерениях АД выше 95 перцентиля для данного возраста и роста. (Приложение 1.). В настоящее время широкое распространение получил метод 24-часового (суточного) мониторирования артериального давления (СМАД).

    Это исследование позволяет диагностировать «скрытую гипертензию», т.е. не выявляемую при разовых клинических измерениях АД, например, в ночное время, исключить гипертензию «белого халата», которая встречается даже у детей, длительно находящихся в стационаре. В последнем случае целесообразно проведение СМАД амбулаторно, когда ребенок на протяжении исследования находится в привычной ему домашней обстановке.

    Проведение СМАД показано всем детям с ХБП ежегодно. В случае выявления АГ необходимо также проведение офтальмологического осмотра (для оценки состояния сосудов сетчатки) и эхокардиографии (для исключения систолической и диастолической дисфункции, оценки степени гипертрофии миокарда). В дальнейшем эти исследования должны выполняться не реже 1 раза в год.

    Основной целью антигипертензивной терапии является предупреждение повреждения органов-мишеней (особенно гипертрофии левого желудочка) и замедление прогрессирования ХБП. Всем детям с ХБП, осложненной АГ, показана антигипертензивная терапия до достижения уровня АД ниже 90 перцентиля для данного возраста и роста.

    Терапия АГ включает в себя коррекцию образа жизни и диеты и медикаментозное лечение.

    В рационе детей с ХБП, осложненной АГ, прежде всего, необходимо ограничить потребление натрия до 1-2 г/сут. Пища готовится без добавления соли, которая выдается дозировано для досаливания еды в тарелке, должны быть исключены все продукты с высоким содержанием натрия (консервы, колбасные изделия, ржаной хлеб и т.п.). Такого рода ограничения часто тяжело переносятся пациентами, но, неконтролируемое потребление натрия значительно снижает эффективность медикаментозной антигипертензивной терапии.

    Ожирение не характерно для детей с ХБП и обычно связано с лечением стероидами. Постепенное снижение массы тела на фоне низкокалорийной диеты и дозированных физических нагрузок способствует нормализации АД. На практике применение низкокалорийной диеты затруднено из-за уже имеющихся у детей с ХБП диетических ограничений, и она редко оказывается эффективной. Тем не менее, у тучных детей с задержкой натрия может быть полезна комбинированная низкокалорийная диета с пониженным содержанием натрия.

    У больных с АГ, получающих ЗПТ, изменение диализного режима может улучшить контроль АД до начала фармакологического лечения. В большинстве случаев, у диализных больных можно добиться нормализации показателей АД адекватной продолжительностью диализа, тщательным контролем баланса внеклеточной жидкости, более агрессивным достижением сухого веса. Считается, что сокращение натрия в диете в сочетании с низким натрием в диализате сравнимо по эффективности с увеличением диализного времени и позволяет добиться умеренного снижения АД.

    На всех стадиях ХБП основой антигипертензивной терапии является фармакологическое лечение. Контроль АД ниже 90 перцентиля может быть достигнут монотерапией не более чем у 75% детей с ХБП 2-ой стадии. У остальных больных необходимо применение 2-х и более лекарственных препаратов. У детей с тХПН трудно достичь адекватного контроля АД, у 50% детей на диализе наблюдается неконтролируемая гипертензия.

    У детей с АГ рекомендуется начинать лечение с одного препарата в низкой или средней терапевтической дозе и постепенно повышать ее до достижения контроля АД. При отсутствии достаточного эффекта от монотерапии показано использование комбинации из 2-х и более препаратов. Исключение - неотложные состояния при АГ, такие как гипертонический криз, гипертоническая энцефалопатия, когда лечение следует начинать с внутривенного введения препаратов до достижения клинического эффекта.

    В настоящее время в терапии артериальной гипертензии используется широкий спектр лекарственных средств (Табл.2.1).

    В первую очередь применяются препараты следующих групп:

    · Ингибиторы ангиотензин-превращающего фермента (иАПФ)

    · Блокаторы рецепторов к ангиотензину II (БРА)

    · Блокаторы кальциевых каналов

    · β - адреноблокаторы

    · диуретики

    К препаратам резерва относятся:

    · α β – адреноблокаторы

    · центральные α – антагонисты

    · периферические α - антагонисты

    · периферические вазодилататоры.

    У детей с хронической патологией почек начинать терапию наиболее целесообразно с иАПФ или БРА. Эти препараты не только обладают гипотензивным действием, но и замедляют прогрессирование почечной недостаточности более эффективно, чем препараты других фармакологических групп. Ренопротективный эффект блокады РААС обусловлен снижением внутриклубочковой гипертензии путем избирательной дилатации эфферентной артериолы, снижением протеинурии, а также ослаблением провоспалительного и просклеротического действия ангиотензина II. Дополнительный эффект блокады РААС заключается в снижении симпатической гиперактивности.

    Поскольку протеинурия является независимым фактором прогрессирования ХБП, пациенты с ХБП и протеинурией должны получать блокаторы РААС даже при отсутствии АГ. Не выявлено отчетливых преимуществ применения БРА перед иАПФ. Если протеинурия сохраняется на фоне монотерапии, то возможно применение комбинации иАПФ и БРА, так как это сочетание эффективно для уменьшения протеинурии и замедления прогрессирования ХБП.

    Применение ингибиторов АПФ и БРА противопоказано пациентам со снижением СКФ ≤ 20 мл/мин, при гиперкалиемии, и при двустороннем стенозе почечных артерий. При назначении препаратов этих групп детям с ХБП 3-4 стадии необходимо контролировать уровень азотемии и калия после начала терапии и при каждом повышении дозы. Терапия комбинацией иАПФ и БРА повышает риск падения клубочковой фильтрации и гиперкалиемии. У детей с ХПН целесообразным может быть применение фозиноприла (моноприла), т.к. этот препарат (в отличие от других и АПФ) метаболизируется в основном в печени, а не выводится с мочой и более безопасен для больных с существенным нарушением почечных функций. Отмечено, что кашель, индуцированный иАПФ, у детей встречается реже, чем у взрослых; при возникновении этого побочного эффекта возможна замена иАПФ на БРА.

    b-блокаторы – препараты второй линии для лечения детей с почечной гипертензией. b-блокаторы должны с осторожностью использоваться при сердечной недостаточности, а также у больных сахарным диабетом из-за негативных метаболических эффектов. Неселективные b-блокаторы противопоказаны при заболеваниях легких, сопровождающихся бронхообструкцией. У грудных детей хороший эффект оказывает назначение пропранолола. Ретардированная форма этого препарата позволяет назначать его 1 раз в день у старших детей. Предпочтительнее назначение селективных b1-блокаторов, например атенолола, который также обладает пролонгированным действием.

    Применение b-блокаторов показано при наличии симптомов гиперактивации симпатической нервной системы: тахикардии, вазоконстрикции, высокого сердечного.

    Блокаторы кальциевых каналов (БКК) используются как дополнительная терапия у детей с резистентной гипертензией. Дигидропиридиновые препараты (нифедипин, амлодипин и т.д.) действуют главным образом как вазодилататоры. Дозы амлодипина разработаны для педиатрии и не требуют коррекции в зависимости от почечной функции, однако дигидропиридиновые БКК (нифедипин) повышают внутриклубочковое давление и могут повышать протеинурию, не оказывая, следовательно, ренопротективного действия. Недигидропиридиновые БКК (производные фенилалкиламина - верапамил, бензодиазепина - дилтиазем) обладают дополнительным антипротеин- урическим эффектом.

    В исследованиях у пожилых больных с сахарным диабетом 2 типа, недигдропиридиновые БКК показали себя как действенное средство в снижении протеинурии и АД и замедлении прогрессирование ХБП, их эффективность в этом отношении оказалась сравнима с иАПФ - лизиноприлом. Поскольку среди детей подобных исследований не проводилось, в детском возрасте недигдропиридиновые БКК должны применяться с осторожностью, учитывая их побочные эффекты (удлинение интервала PQ, брадиаритмии).

    В исследованиях у больных с сахарным диабетом, АГ и протеинурией комбинация иАПФ с дигидропиридиновым БКК III поколения – манидипином - оказывала дополнительный антипротеинурический эффект по сравнению с монотерапией иАПФ. Показано благоприятное воздействие манидипина на почечную гемодинамику и протеинурию.

    Внутривенное введение никардипина является методом выбора для лечения гипертонического криза, особенно в тех случаях, когда почечная функция не известна или быстро изменяется. Этот препарат может безопасно использоваться даже у очень маленьких детей с АГ.

    Диуретики показаны, прежде всего, пациентам с задержкой натрия, гиперволемией и отеками и не являются препаратами первой линии в терапии АГ у детей с ХБП. Необходимо помнить, что тиазидные диуретики становятся малоэффективными при СКФ

    Ренин-ангиотензин-альдостероновая система (РААС.)

    В регуляции объема и давления крови участвует юкстагломерулярный аппарат (ЮГА). Образующийся в гранулах клеток ЮГА протеолитический фермент ренин катализирует превращение ангиотензиногена (одного из белков плазмы) в декапептид ангиотензин I, который не обладает прессорной активностью. Под действием ангиотензин-превращающего фермента (АПФ) он расщепляется (главным образом в легких, почках, головном мозге) до октапептида ангиотензина II, который действует как мощный вазоконстриктор, а также стимулирует выработку альдостерона корой надпочечников. Альдостерон усиливает реабсорбцию Nа+ в канальцах почек и стимулирует выработку антидиуретического гормона. В результате чего происходит задержка Nа+ и воды, что приводит к повышению АД. Кроме того, в плазме крови имеется ангиотензин III (гептапептид, не содержащий аспарагиновой кислоты), который также активно стимулирует высвобождение альдостерона, но обладает менее выраженным прессорным действием, чем ангиотензин II. Следует отметить, что чем больше образуется ангиотензина II, тем сильнее выражена вазоконстрикция и, следовательно, тем более выражено повышение АД.

    Секреция ренина регулируется следующими механизмами, не являющимися взаимоисключающими:

    • 1) барорецепторами почечных сосудов, которые, очевидно, реагируют на изменение напряжения стенки приносящих артериол,
    • 2) рецепторами macula densa, которые, по-видимому, чувствительны к изменению скорости поступления или концентрации NaCl в дистальных канальцах,
    • 3) отрицательной обратной связью между концентрацией в крови ангиотензина и секрецией ренина
    • 4) симпатической нервной системой, стимулирующей секрецию ренина в результате активации в-адренорецепторов почечного нерва.

    Система поддержания гомеостаза натрия. Она включает в себя скорость клубочковой фильтрации (СКФ) и факторы натрийуреза (выведения ионов натрия с мочой). При снижении ОЦК, снижается и СКФ, что приводит, в свою очередь, к повышению реабсорбции натрия в проксмальном отделе нефрона. К факторам натрийуреза относится группа пептидов со схожими свойствами и общим названием - натрийуретический пептид (или атриопептид), вырабатываемых миокардом предсердий в ответ на их расширение. Эффект атриопептида заключается в уменьшении реабсорбции натрия в дистальных канальцах и вазодилятации.

    Система почечных вазодепрессорных субстанций включает: простагландины, калликреин-кининовая система, NO, фактор активации тромбоцитов, которые своим действием уравновешивают вазопрессорный эффект ангиотензина.

    Кроме того, определенную роль в манифестации АГ играют такие факторы внешней среды (рис.1 пункт 6), как гиподинамия, курение, хронические стрессы, избыточное потребление с пищей поваренной соли.

    Этиология артериальной гипертензии:

    Этиология первичной, или эссенциальной, гипертензии не известна. И вряд ли одна причина смогла бы объяснить такое разнообразие гемодинамических и патофизиологических расстройств, которые наблюдаются при данном заболевании. В настоящее время многие авторы придерживаются мозаичной теории развития АГ, согласно которой поддержание высокого АД обусловлено участием многих факторов, даже если первоначально доминировал какой-либо один из них (например, взаимодействие симпатической нервной системы и ренин-ангиотензин-альдостероновой системы).

    Не вызывает сомнения, что существует генетическая предрасположенность к гипертензии, однако точный механизм ее до сих пор не ясен. Возможно, что факторы внешней среды (такие как количество натрия в пище, характер питания и образ жизни, способствующие ожирению, хронический стресс) оказывают свое действие только на генетически предрасположенных лиц.

    Основные причины развития эссенциальной гипертензии (или гипертонической болезни) на долю которой приходится 85-90% случаев всех АГ следующие:

    • - активация ренин-ангиотензин-альдостероновой системы при изменениях в генах, кодирующих ангиотензиноген или другие белки РААС,
    • - активация симпатической нервной системы, что приводит к повышению АД преимущественно путем вазоконстрикции,
    • - нарушение транспорта Na+ через клеточные мембраны гладкомышечных клеток кровеносных сосудов (в результате торможения Na+-K+-насоса или повышения проницаемости мембран для Na+ с повышением содержания внутриклеточного Са2+),
    • - дефицит вазодилятаторов (таких, как NO, компоненты калликреин-кининовой системы, простагландины, предсердный натрийуретический фактор и др.).

    Среди основных причин симптоматических гипертензий можно выделить:

    • - первичное двустороннее поражение почек (которое может сопровождаться АГ вследствие как повышения секреции ренина и активации РААС с задержкой натрия и жидкости, так и снижения секреции вазодилятаторов) при таких заболеваниях, как острый и хронический гломерулонефрит, хронический пиелонефрит, поликистоз почек, амилоидоз, опухоли почек, обструктивная уропатия, коллагенозы и др.
    • - эндокринные (потенциально излечимые) заболевания, такие как первичный и вторичный гиперальдостеронизм, болезнь и синдром Иценко-Кушинга, диффузный тиреотоксический зоб (Базедова болезнь или болезнь Грейвса), феохромоцитома, ренин-продуцирующие опухоли почек.
    • - нейрогенные заболевания, в том числе сопровождающимися повышением внутричерепного давления (травма, опухоль, абсцесс, кровоизлияния), поражением гипоталамуса и ствола мозга, связанные с психогенными факторами.
    • - сосудистые заболевания (васкулиты, коарктация аорты и другие аномалии сосудов), полицитемия, увеличение ОЦК ятрогенного характера (при избыточном переливании препаратов крови и растворов).

    Морфология артериальной гипертензии:

    Доброкачественная форма АГ:

    На ранних стадиях АГ не удается обнаружить никаких структурных изменений. В конечном же итоге развивается генерализованный артериолярный склероз.

    Учитывая длительное течение болезни, выделяют три стадии, имеющие определенные морфологические различия и согласующиеся со стадиями, предложенными экспертами ВОЗ (указанными в скобках):

    • 1) доклиническая (легкое течение),
    • 2) распространенных изменений артерий (средней тяжести),
    • 3) изменений органов в связи изменением артерий и нарушением органного кровотока (тяжелое течение) доклиническая стадия.

    Клинически проявляется транзиторной гипертензией (эпизодами повышения АД). На ранней, лабильной, стадии болезни СВ увеличен, ОПСС некоторое время остается в пределах нормы, но неадекватно для данного уровня СВ. Затем, вероятно в результате процессов ауторегуляции, ОПСС начинает увеличиваться, а СВ возвращается к нормальному уровню.

    В артериолах и мелких артериях выявляется гипертрофия мышечного слоя и эластических структур > постепенное ^ толщины стенки сосуда с уменьшением его просвета, что клинически проявляется в ^ ОПСС. Спустя некоторое время на фоне катехолемии, ^ гематокрита, гипоксии (элементов стенки артерий и артериол) повышается сосудистая проницаемость, что приводит к плазматическому пропитыванию стенки сосудов > уменьшению ее эластичности и еще большему ^ ОПСС. Морфологические изменения на данной стадии полностью обратимы и при своевременном начале антигипертензивной терапии возможно предотвратить развитие поражений органов-мишеней.

    В сердце, вследствие транзиторного ^ постнагрузки, возникает умеренная компенсаторная гипертрофия левого желудочка при которой размеры сердца и толщина стенки левого желудочка ^, а размер полости левого желудочка не изменяется либо может несколько уменьшаться - концентрическая гипертрофия (характеризует стадию компенсации сердечной деятельности).

    Стадия распространенных изменений артерий. Клинически проявляется стойким повышением АД.

    В артериолах и мелких артериях мышечного типа выявляется распространенный гиалиноз, развившийся в исходе плазматического пропитывания (простой тип сосудистого гиалина), или артериолосклероз средней оболочки и интимы артериол в ответ на выход плазмы и белков. Артериологиалиноз отмечается в почках, головном мозге, сетчатке глаза, поджелудочной железе, кишечнике, капсуле надпочечников. Макроскопически гиалинизированные сосуды выглядят в виде стекловидных трубочек с толстыми стенками и точечным просветом, плотной консистенции. Микроскопически в стенке артериол выявляются гомогенные эозинофильные массы, слои стенки могут быть практически не различимы.

    В артериях эластического, мышечно-эластического и мышечного типов развиваются: - эластофиброз - гиперплазия и расщепление внутренней эластической мембраны, склероз - атеросклероз, имеющий ряд особенностей:

    • а) носит более распространенный характер, захватывает артерии мышечного типа,
    • б) фиброзные бляшки имеют циркулярный характер (а не сегментарный), что приводит к более значительному сужению просвета сосуда.

    В сердце нарастает степень гипертрофии миокарда, масса сердца может достигать 900-1000 г, а толщина стенки левого желудочка - 2-3 см (cor bovinum). Однако, в связи с относительной недостаточностью кровоснабжения (увеличение размеров кардиомиоцитов, гиалиноз артериол и артерий) и нарастающей гипоксией развивается жировая дистрофия миокарда и миогенное расширение полостей - эксцентрическая гипертрофия миокарда, диффузный мелкоочаговый кардиосклероз, появляются признаки сердечной декомпенсации.

    3) Стадия изменений органов в связи изменением артерий и нарушением органного кровотока.

    Вторичные изменения органов при неосложенном артериологиалинозе и атеросклерозе могут развиваться медленно, что приводит к атрофии паренхимы и склерозу стромы.

    При присоединении тромбоза, спазма, фибриноидного некроза во время криза возникают острые нарушения кровообращения - кровоизлияния, инфаркты.

    Изменения в головном мозге:

    Множественные мелкоочаговые кровоизлияния (hemorragia per diapedesin).

    Гематомы - кровоизлияния с разрушением ткани мозга (hemorragia per rhexin микроанавризм, которые возникают чаще на фоне гиалиноза с фибриноидным некрозом стенки мелких перфорирующих артерий головного мозга преимущественно подкорковых ядер и субкортикального слоя). В исходе кровоизлияний в ткани головного мозга формируются ржавые кисты (окраска обусловлена гемосидерином).

    В почках развивается артериолосклеротический нефросклероз или первичное сморщивание почек, в основе которого лежит артериологиалиноз >запустевание со склерозом и гиалинозом капилляров клубочков > склероз стромы вследствие длительной гипоксии > атрофия эпителия канальцев почек.

    Макроскопическая картина: почки значительно уменьшены в размерах (вид местной атрофии от недостатка кровоснабжения), поверхность мелкозернистая, плотные, на разрезе отмечается истончение коркового и мозгового слоев, разрастание жировой клетчатки вокруг лоханки. Участки западения на поверхности почек соответствуют атрофированным нефронам, а очаги выбухания - функционирующим нефронам в состоянии компенсаторной гипертрофии.

    Микроскопическая картина: стенки артериол значительно утолщены за счет накопления в интиме и средней оболочке гомогенных слабооксифильных бесструктурных масс гиалина (в некоторых случаях структурные компоненты стенки артериол, за исключением эндотелия, не дифференцируются), просвет сужен (вплоть до полной облитерации). Клубочки коллабированы (спавшиеся), многие замещены соединительной тканью или массами гиалина (в виде слабооксифильных гомогенных «медальончиков»). Канальцы атрофированы. Количество интерстициальной ткани увеличено. Сохранившиеся нефроны компенсаторно гипертрофированы.

    Артериолосклеротический нефросклероз может закончиться развитием хронической почечной недостаточности.

    Злокачественная форма АГ:

    В настоящее время встречается редко.

    Возникает первично или осложняет доброкачественную гипертензию (гипертонический криз).

    Клинически: уровень Рдиаст.? 110-120 мм рт. ст., зрительные расстройства (из-за двустороннего отека диска зрительного нерва), резкие головные боли и гематурия (реже - анурия).

    Уровень ренина и ангиотензина II в сыворотке крови высокий, значительный вторичный гиперальдстеронизм (сопровождающийся гипокалиемией).

    Возникает чаще у мужчин среднего возраста (35-50 лет, редко до 30-ти лет).

    Быстро прогрессирует, без лечения приводит к развитию хронической почечной недостаточности (ХПН) и летальному исходу в течение 1-2 лет.

    Морфологическая картина:

    Вслед за короткой стадией плазматического пропитывания следует фибриноидный некроз стенки артериол >повреждение эндотелия > присоединение тромбоза > органные изменения: ишемическая дистрофия и инфаркты, кровоизлияния.

    Со стороны сетчатки: двусторонний отек диска зрительного нерва, сопровождающийся белковым выпотом и кровоизлияниями в сетчатку

    В почках: злокачественный нефросклероз (Фара), для которого характерны фибриноидный некроз стенок артериол и капиллярных петель клубочков, отек интерстиция, геморрагии > клеточная реакция и склероз в артериолах, клубочках и строме, белковая дистрофия эпителия канальцев почек.

    Макроскопическая картина: вид почек зависит от длительности предсуществующей фазы доброкачественной АГ. В связи с этим, поверхность может быть гладкой или гранулированной. Весьма характерны петехиальные кровоизлияния, которые придают почке пестрый вид. Прогрессирование дистрофических и некротических процессов быстро приводит к развитию ХПН и смерти.

    В головном мозге: фибриноидный некроз стенок артериол с присоединением тромбоза и развитием ишемических и геморрагических инфарктов, кровоизлияний, отек.

    Гипертонический криз - резкое повышение АД, связанное со спазмом артериол - может возникать в любой стадии гипертензии.

    Морфологические изменения при гипертоническом кризе:

    Спазм артериол: гофрированность и деструкция базальной мембраны эндотелия с расположением его в виде частокола.

    Плазматическое пропитывание.

    Фибриноидный некроз стенок артериол.

    Диапедезные кровоизлияния.

    Клинико-морфологические формы АГ:

    В зависимости от преобладания сосудистых, дистрофических, некротических, геморрагических и склеротических процессов в том или ином органе, выделяют следующие формы:

    Сердечная форма - составляет сущность ишемической болезни сердца (как и сердечная форма атеросклероза)

    Мозговая форма - лежит в основе большинства цереброваскулярных заболеваний (как и атеросклероз сосудов головного мозга)

    Почечная форма характеризуется как острыми (артериолонекроз - морфологическое проявление злокачественной гипертензии), так и хроническими изменениями (артериолосклеротический нефросклероз).

    Рис. 1

    Список сокращений к лекции «Гипертоническая болезнь»

    АГ - артериальная гипертензия.

    АД - артериальное давление.

    ОЦК - объем циркулирующей крови.

    СВ - сердечный выброс.

    ОПСС - общее периферическое сопротивление сосудов.

    УО - ударный объем.

    ЧСС - частота сердечных сокращений.

    СНС - симпатическая нервная система.

    ПСНС - парасимпатическая нервная система.

    РААС - ренин-ангиотензин-альдостероновая система.

    ЮГА - юкстагломерулярный аппарат.

    АПФ - ангиотензин-превращающий фермент.

    СКФ - скорость клубочковой фильтрации.

    ВОЗ - всемирная организация здравоохранения.

    ХПН - хроническая почечная недостаточность.

    Ренин

    – фермент, синтезируемый юкстагломерулярными клетками почечных афферентных артериол, имеющий ММ около 40 кДа. Особенно интенсивно образование ренина происходит при ишемии почек. Локализация юкстагломерулярных клеток делает их особенно чувствительными к изменениям кровяного давления, а также концентрации ионов Na + и К + в жидкости, протекающей через почечные канальцы. Благодаря указанным свойствам любая комбинация факторов, вызывающая снижение объема жидкости (обезвоживание, падение кровяного давления, кровопотеря и др.) или снижение концентрации NaCl, стимулирует высвобождение ренина.

    В то же время большинство регуляторов синтеза ренина действуют через почечные барорецепторы. На освобождение ренина оказывает влияние состояние ЦНС, а также изменение положения тела в пространстве. В частности, при переходе из положения лёжа в положение сидя или стоя (клиностатическая проба) секреция ренина увеличивается. Эта рефлекторная реакция обусловлена повышением тонуса симпатической части автономной нервной системы, передающей импульсы к b-адренорецепторам юкстагломерулярных клеток.

    Основным субстратом, на который воздействует ренин, является ангиотензиноген – белок, входящий во фракцию a 2 -глобулинов и образуемый печенью. Под воздействием глюкокортикоидов и эстрогенов синтез ангиотензиногена значительно возрастает. В результете действия ренина ангиотензиноген превращается в декапептид ангиотензин I. Это соединение обладает чрезвычайно слабым действием и существенного влияния на уровень кровяного давления не оказывает.

    Между тем ангиотензин I под воздействием так называемого ангиотензинпревращающего фермента (АПФ) переходит в мощный сосудосуживающий фактор – ангиотензин II. АПФ (дипептидкарбооксипептидаза) является интегральным белком, расположенным преимущественно на мембране эндотелиальных клеток, эпителии, мононуклеарах, нервных окончаниях, клетках репродуктивных органов и др. Растворимая форма АПФ присутствует практически во всех жидкостях организма.

    Принято выделять две изоформы АПФ. Первая из них получила условное наименование «соматической». Эта изоформа имеет ММ 170 кДа и включает гомологичные С- и N-домены. Вторая форма АПФ («репродуктивная») найдена в семенной жидкости, имеет ММ около 100 кДа и соответствует С-домену первой изоформы АПФ. Каждый из 2 указанных доменов содержит аминокислотные остатки, которые могут принимать участие в образовании связи с атомом цинка. Такие Zn 2+ -структуры являются типичными для многих металлопротеиназ и оказываются основными участками взаимодействия фермента как с субстратом, так и с ингибиторами АПФ.

    Следует заметить, что АПФ не только приводит к образованию ангиотензина II, но и разрушает брадикинин – соединение, расширяющее кровеносные сосуды. Следовательно, увеличение кровяного давления при воздействии АПФ связано как с образованием ангиотензина II, так и с распадом брадикинина (рис. 32).

    Важную роль для действия АПФ играет ионный состав и, в частности, содержание ионов хлора. Так, при высокой концентрации Cl – С-домен АПФ гидролизует и брадикинин, и ангиотензин-I быстрее, чем N-домен. Во внеклеточных регионах, где концентрация анионов хлора высока, за превращение ангиотензина-I отвечает преимущественно N-домен. Однако внутриклеточно, где концентрация Cl – низкая, N-домен может участвовать в гидролизе других пептидных субстанций.

    За последние годы установлено, что АПФ играет важную роль в гемопоэзе, ибо под его воздействием ингибируется образование гематопоэтического пептида , тормозящего образование гематопоэтических клеток костного мозга.

    Роль АПФ в организме была выявлена на мышах, лишенных гена АПФ. У таких животных отмечалось низкое кровяное давление, различные сосудистые дисфункции, нарушение структуры и функции почек и бесплодие у самцов.

    Ангиотензин II

    увеличивает кровяное давление, вызывая сужение артериол, и является самым сильнодействующим из известных вазоактивных агентов. Кроме того, он по механизму обратной связи тормозит образование и высвобождение ренина юкстагломерулярными клетками почки, что в конечном итоге должно восстанавливать нормальный уровень кровяного давления. Под воздействием ангиотензина II резко возрастает продукция основного минералокортикоида – альдостерона. Несмотря на то, что это действие является прямым, ангиотензин II не влияет на продукцию кортизола. Основное назначение альдостерона сводится к задержке Na + (за счет усиления его реабсорбции в почечных канальцах) и выделению К + и Н + (главным образом через почки). Эти реакции осуществляются следующим образом.

    Альдостерон

    проникает из внеклеточной жидкости в цитоплазму клетки и там соединяется со специфическим рецептором, после чего образовавшийся комплекс (альдостерон+рецептор) проникает в ядро. Альдостерон также стимулирует открытие Na + каналов, благодаря чему ионы Na + входят в клетку через апикальную мембрану из просвета канальца.

    Увеличение секреции К + под воздействием альдостерона обусловлено возрастанием проницаемости апикальной мембраны по отношению к этим ионам, благодаря чему К + поступает из клетки в просвет канальца.

    Задержка Na + в организме, как и ангиотензин II, способствует повышению кровяного давления.

    Ангиотензин II способен связываться со специфическими рецепторами клубочковых клеток надпочечника. Содержание этих рецепторов во многом зависит от концентрации ионов К + . Так, если уровень К + повышается, то возрастает число рецепторов к ангиотензину II в клубочковых клетках. При уменьшении концентрации ионов К + отмечается прямо противоположный эффект. Следовательно, ионы К + играют основную роль в действии ангиотензина II на надпочечники.

    За последнее время установлено, что ангиотензин II способен активировать макрофаги, благодаря чему усиливается агрегация тромбоцитов и ускоряется свёртывание крови. Одновременно при этом высвобождается ингибитор активатора плазминогена- I (ИАП-1), что может сопровождаться депрессией фибринолиза. Ангиотензин II является одним из факторов, способствующих развитию атерогенеза, торможению апоптоза и усилению оксидативного стресса в тканях, тем самым провоцируя агрегацию тромбоцитов и тромбообразование.

    Ангиотензин II способен усиливать функцию миокарда, участвует в биосинтезе норадреналина и других физиологически активных веществ. Одновременно он может действовать как ростовой фактор, приводя к сосудистой и сердечной гипертрофии.

    У некоторых животных и у человека ангиотензин II под воздействием фермента аминопептидазы превращается в гептапептид ангиотензин III. У человека уровень ангиотензина II приблизительно в 4 раза выше, чем ангиотензина III. Оба эти соединения оказывают влияние на уровень кровяного давления и продукцию альдостерона и довольно быстро разрушаются под воздействием ферментов ангиотензиназ.

    При тяжелых заболеваниях почек, сопровождающихся их ишемией, благодаря повышенному образованию и секреции ренина наблюдается стойкое повышение кровяного давления (почечная гипертензия). Применение ингибиторов АПФ в этих условиях приводит к быстрой нормализации кровяного давления.

    В заключение следует еще раз подчеркнуть, что ангиотензин-ренино-альдостероновая система теснейшим образом связана с функцией калликреин-кининовой системы, ибо образование ангиотензина II и разрушение брадикинина осуществляется под воздействием одного и того же фермента – АПФ.