Логические операции и их свойства. Теоретические основы булева моделирования

Но в терминологии программирования на языках высокого уровня в названиях битовых операций присутствуют прилагательные битовый , побитовый (например: «побитовое логическое И », оно же «побитовое умножение»), поразрядный .

В некоторых языках программирования названия операторов, соответствующих логическим и побитовым логическим операциям, похожи. Кроме того, язык программирования может допускать неявное приведение числового типа к логическому и наоборот. В таких языках программирования необходимо внимательно следить за использованием логических и побитовых операций, перемешивание которых может привести к ошибкам. Например, в C++ результатом выражения «2 && 1» (логическое И ) является булево значение true , а результатом выражения «2 & 1» (побитовое И ) - целое значение 0 .

Побитовое отрицание (NOT) [ | ]

Побитовое отрицание (или побитовое НЕ , или дополнение ) - это унарная операция , действие которой эквивалентно применению логического отрицания к каждому биту двоичного представления операнда. Другими словами, на той позиции, где в двоичном представлении операнда был 0, в результате будет 1, и, наоборот, где была 1, там будет 0. Например:

НЕ 01
10

Побитовое «И» (AND) [ | ]

Второе название - тем, что действительно является сложением в кольце вычетов по модулю два, из чего следуют некоторые интересные свойства. Например, в отличие от вышеописанных «И» и «ИЛИ», данная операция является обратимой, или инволютивной: (x ⊕ y) ⊕ y = x {\displaystyle (x\oplus y)\oplus y=x} .

Также данная операция может называться «инверсией по маске», то есть у исходного двоичного числа инвертируются биты, которые совпадают с 1 в маске.

Другие побитовые логические операции [ | ]

В распространённых языках программирования встроенными средствами реализуются только четыре побитовые логические операции: И, ИЛИ, НЕ и исключающее ИЛИ . Для задания произвольной побитовой логической операции вполне достаточно перечисленных, и, более того, как следует из теории булевых функций, можно ограничиться ещё меньшим набором базовых операций. Есть также языки программирования, где существует встроенная возможность выполнить любую бинарную логическую операцию побитово. Например, в PL/I есть встроенная функция BOOL, третий аргумент которой предназначен для указания произвольной логической операции, которую необходимо побитово применить к первым двум аргументам .

Битовые сдвиги [ | ]

К битовым операциям также относят битовые сдвиги. При сдвиге значения битов копируются в соседние по направлению сдвига. Различают несколько видов сдвигов - логический , арифметический и циклический , в зависимости от обработки крайних битов.

Также различают сдвиг влево (в направлении от младшего бита к старшему) и вправо (в направлении от старшего бита к младшему).

Логический сдвиг [ | ]

При логическом сдвиге значение последнего бита по направлению сдвига теряется (копируясь в бит переноса), а первый приобретает нулевое значение.

Арифметический сдвиг [ | ]

Арифметический сдвиг аналогичен логическому, но число считается знаковым, представленным в дополнительном е. Так, при правом сдвиге старший бит сохраняет своё значение. Левый арифметический сдвиг идентичен логическому.

Арифметические сдвиги влево и вправо используются для быстрого умножения и деления на 2.

Циклический сдвиг [ | ]

При циклическом сдвиге, значение последнего бита по направлению сдвига копируется в первый бит (и копируется в бит переноса).

Также различают циклический сдвиг через бит переноса - при нём первый бит по направлению сдвига получает значение из бита переноса, а значение последнего бита сдвигается в бит переноса.

В языках программирования [ | ]

В следующей таблице для некоторых языков программирования приведены встроенные операторы и функции, реализующие побитовые логические операции.

Язык НЕ И ИЛИ Искл. ИЛИ Сдвиг влево Сдвиг вправо Другие
/С++ , Java , , Ruby , Python ~ & | ^ << >>
Pascal not and or xor shl shr
Kotlin inv
PL/I INOT IAND IOR IEOR BOOL
¬ & | ¬
Prolog \ /\ \/

В теории сложности алгоритмов [ | ]

Термин битовая операция , часто используется в области вычислений так называемых быстрых алгоритмов , которые изучают алгоритмы вычисления заданной функции с заданной точностью с использованием как можно меньшего числа битовых операций.

Связь с другими науками [ | ]

Битовые операции и математическая логика [ | ]

Битовые операции очень близки (хотя и не тождественны) логическим связкам в классической логике . Бит можно рассматривать как логическое суждение - его значениями являются 1 «истина» и 0 «ложь». При такой интерпретации известные в логике связки конъюнкции , дизъюнкции , импликации , отрицания и другие имеют представление на языке битов. И наоборот, битовые операции легко описываются на языке исчисления высказываний .

Однако, связкам математической логики более соответствуют логические операции в том числе в программировании, нежели собственно битовые операции.

Обобщение операций на булеву алгебру [ | ]

Вместо одиночных битов мы можем рассмотреть векторы из фиксированного количества битов (в программировании их называют регистрами), например, байты . В программировании регистры рассматривают как двоичное разложение целого числа: b = b 0 + 2 b 1 + 2 2 b 2 + . . . + 2 N − 1 b N − 1 {\displaystyle b=b_{0}+2b_{1}+2^{2}b_{2}+...+2^{N-1}b_{N-1}} , где N - количество битов в регистре.

Тем не менее, ничто не мешает рассматривать эти регистры именно как битовые векторы и проводить булевые операции покомпонентно (бит номер k значения есть результат операции от битов номер k аргументов). Кстати, математически говоря, булевы операции распространяются таким образом на произвольную булеву алгебру . Таким образом мы получаем операции побитового И, ИЛИ, НЕ, искл. ИЛИ и т. д. Как арифметические, данные операции не обладают хорошими свойствами за исключением побитового НЕ, которое для чисел в дополнительном е совпадает с вычитанием из −1 (~x == -1-x). Однако, они очень полезны в программировании.

2-адическая интерпретация [ | ]

Целое число, записанное (в дополнительном е) в бесконечный (в сторону положительных степеней двойки) двоичный регистр является естественным объектом для теории p-адических чисел при p = 2 {\displaystyle p=2} . Множество целых 2-адических чисел (то есть произвольных бесконечных битовых последовательностей) может быть рассмотрено как булева алгебра точно так же как и множество значений битового регистра конечной длины. Все вышеперечисленные битовые операции оказываются непрерывными отображениями . Хотя практическое программирование не располагает регистрами бесконечной длины, это не мешает использовать данный теоретический факт в криптографии для создания быстродействующих алгоритмов шифрования.

Битовые операции как основа цифровой техники [ | ]

Битовые операции лежат в основе обработки цифровых сигналов . А именно, посредством них мы можем из одного или нескольких сигналов на входе получить новый сигнал, который в свою очередь может быть подан на вход одной или нескольким таким операциям. По сути, именно битовые операции в сочетании с запоминающими элементами (напр. триггерами) реализуют всё богатство возможностей современной цифровой техники.

Практические применения [ | ]

С точки зрения применения отдельная битовая операция мало интересна. Поэтому практическое применение основывается на способах комбинирования различных битовых операций, для реализации более сложного вычисления. Можно отметить два аспекта:

  1. увеличение размера регистров, в которых битовые операции выполняются не по одной, а сразу на множестве 8, 16, 32, 64 битах
  2. экспериментальные устройства, где обобщают битовые операции с двоичной системы, на троичные и прочие системы счисления (так например, разработана теория работы с четверичной системой (

ОСНОВНЫЕ ПОНЯТИЯ КУРСА

Задачей курса является знакомство с графическим электронным моделированием для автоматизации проектирования технических объектов с целью существенного увеличения производительности труда проектной организации.

Полный цикл проектирования изделия называют НИОКР. Это комплекс мероприятий, состоящий из научных исследований и производства опытных и мелкосерийных образцов продукции, который предшествует запуску нового продукта в промышленное производство. В структуре НИОКР предметом приложения методов геометрического моделирования являются опытно-конструкторские работы.

ОКР выполняются после завершения НИР при условии получения на этом этапе положительных результатов с точки зрения удовлетворения целей будущим изделием.

Основные этапы ОКР изложены в ГОСТ 15.001-88.”Система разработки и постановки продукции на производство”.

1 этап. Разработка технического задания, которое включает в себя наименование, назначение, технические требования, показатели качества и экономичности, а также специальные требования заказчика к разрабатываемой конструкции.

2 этап. Разработка технического предложения, которое содержит подтверждение технико-экономической целесообразности разработки конструкции, учитывая возможности заводов-изготовителей, а также достижения науки и техники.

3 этап. Разработка эскизного проекта, представляющего документацию в виде совокупности конструкторских решений, дающих представление об устройстве конструкции, принципе её действия, габаритах и основных параметрах. При этом производятся предварительные расчёты по работоспособности конструкции, которые оформляются в виде пояснительной записки.

4 этап. Разработка технического проекта, содержащего окончательно выбранное и проработанное проектное решение. Окончательные выводы принимаются в ходе выполнения проверочных расчётов, в результате которых происходит уточнение или корректировка основных параметров изделия, полученных на предыдущем этапе.

5 этап. Разработка рабочей документации, содержащей чертежи деталей и сборочных единиц, по которым можно изготовить и испытать опытные образцы, а также проконтролировать их точность и качество в процессе изготовления.

6 этап. Проведение предварительных испытаний, с целью проверки соответствия опытного образца требованиям ТЗ и определения возможности его предъявления на окончательные испытания перед запуском в серийное производство.

Для повышения эффективности труда инженеров на этапе ОКР необходимо широкое использование различных средств автоматизации для решения многообразных проектных и исследовательских задач.

В настоящее время в машинной графике используются три вида геометрического моделирования. Это каркасное моделирование, поверхностное моделирование и твёрдотельное моделирование.

На данном этапе развития графических систем твёрдотельное моделирование является стандартом в 3D CAD/CAM/CAE-системах проектирования.

Задачи, решаемые на современных машиностроительных предприятиях, требуют, чтобы проектировщик создал задуманный образ будущего изделия не в виде чертежа, а в виде виртуальной твёрдотельной пространственной модели, которая может описать не только полную геометрию изделия, а ещё механические и физические свойства материала.

Для реализации подобного круга задач появились 3D системы среднего класса. Это Solid Works, AutoDesk Inventor, SolidEdge, а также отечественные Компас 3D и T-FLEX CAD.

Чертёж в этих системах играет вспомогательную роль, а способы его создания основаны на методах отображения пространственной модели.

Структура создания твёрдотельного геометрического объекта представлена на следующей схеме.



Обратная связь

Алгоритм твёрдотельного моделирования позволяет создавать сложные геометрические модели через механизм последовательного применения булевых операций к набору элементарных объёмных тел, составляющих сложную модель. Промежуточные состояния при образовании сложного объекта автоматически фиксируются в иерархической модели данных. Следовательно, эта модель отображает на экране монитора весь процесс формоизменения сложного геометрического объекта. В графических системах данная иерархическая модель называется CSG – деревом (Constructive Solid Geometry tree) или дословно конструктор твёрдых тел.

В структуре CSG-дерева процесс последовательного моделирования сложного геометрического объекта представлен в виде следующих булевых операций над элементарными телами:

а) вычитание б) объединение в) пересечение.

Булевы операции над элементарными телами

Булевы операции и математическая логика

Булевы операции очень близки (хотя и не тождественны) логическим связкам в классической логике . Бит можно рассматривать как логическое суждение - его значениями являются 1 «истина» и 0 «ложь». При такой интерпретации известные в логике связки конъюнкции , дизъюнкции , импликации , отрицания и другие имеют представление на языке битов. И наоборот, битовые операции легко описываются на языке исчисления высказываний .

Однако, связкам математической логики более соответствуют логические операции в т.ч. в программировании, нежели собственно битовые операции.

Булевы операции как основа цифровой техники

Булевы операции лежат в основе обработки цифровых сигналов . А именно, посредством них мы можем из одного или нескольких сигналов на входе получить новый сигнал, который в свою очередь может быть подан на вход одной или нескольким таким операциям. По сути, именно булевы операции в сочетании с запоминающими элементами (напр. триггерами) реализуют всё богатство возможностей современной цифровой техники.

Список битовых операций

И

«(Логическое) И» (and) - аналог конъюнкции в логике. Иногда называется логическим умножением.

Выдаёт 1 если оба входа равны 1, в противном случае 0. Если один из аргументов равен 1, то результат «И» равен другому. Если один из аргументов равен 0, то результат «И» равен 0 независимо от значения другого аргумента.

НЕ

«(Логическое) НЕ» (not), инвертирование - аналог отрицания в логике.

Данная унарная операция (с одним входом) заменяет 0 на 1 и наоборот. Реализующий её элемент называется инвертором .

ИЛИ

«(Логическое) ИЛИ» (or) - аналог дизъюнкции в логике.

Выдаёт 1 если и только если хотя бы один из входов равен 1. Операция, двойственная AND: при инвертировании выхода и всех входов (т.е. при замене 0 и 1 местами) «И» и «ИЛИ» взаимно превращается друг в друга.

Исключающее ИЛИ

«Исключающее ИЛИ» (xor), «сложение по модулю 2» - аналог исключающего ИЛИ в логике.

Если один из аргументов равен 0, то результат равен другому. Если один из аргументов равен 1, то результат равен отрицанию другого аргумента. Первое русское название операции обусловлено тем, что результат данной операции отличается от результата «ИЛИ» только в одном случае из 4 случаев входа - обоих 1 (случай одновременной истинности аргументов «исключается»). Ещё в русской грамматике значение данной логической связки передаётся союзом «либо».

Второе название - тем, что действительно является сложением в кольце вычетов по модулю 2, из чего следуют некоторые интересные свойства. Например, в отличие от вышеописанных «И» и «ИЛИ» данная операция является обратимой, или инволютивной: .

Операции от многих аргументов

Операции «И», «ИЛИ» и «исключающее ИЛИ» являются не только коммутативными, но и ассоциативными , и потому легко обобщаются на случай нескольких аргументов (входов).

Прочие бинарные операции

Стрелка Пирса является результатом инвертирования результата «ИЛИ» своих аргументов, выдаёт значение 1 только когда оба входа 0.

«И-НЕ» (nand), или «штрих Шеффера» .

Двойственная стрелке Пирса операция: является результатом инвертирования результата «И» своих аргументов, выдаёт значение 0 только когда оба входа 1. Известна простотой реализации в ТТЛ .

Импликация («если-то») - аналог импликации в логике.

Совпадает с «ИЛИ» с инвертированным первым аргументом, выдаёт значение 0 только когда первый вход 1 а второй - 0. Данная операция не является коммутативной , в отличие от всех вышеописанных бинарных операций. Её можно понимать как арифметическое (меньше или равно).

Эквиваленция . Выдаёт 1 если и только если оба аргумента равны между собой. Является результатом инвертирования результата «исключающего ИЛИ» своих аргументов. Она же и двойственна исключающему «ИЛИ» в вышеописанном смысле.

Сводная таблица истинности булевых операций

Название→
Аргументы
И (AND) НЕ (NOT) ИЛИ (OR) искл. ИЛИ(XOR) импликация стрелка
Пирса
штрих
Шеффера
x y ()
(x&y)
()
(~x)
()
(x|y)
()
(x^y)
()
((~x)|y)

((~x)&(~y))

(~(x&y))
0 0 0 1 0 0 1 1 1
0 1 0 1 1 1 1 0 1
1 0 0 0 1 1 0 0 1
1 1 1 0 1 0 1 0 0

Операции над битовыми векторами

Обобщение операций на булеву алгебру

Вместо одиночных битов мы можем рассмотреть векторы из фиксированного количества битов (в программировании их называют регистрами), например, байты . В программировании регистры рассматривают как двоичное разложение целого числа: b = b 0 + 2b 1 + 2 2 b 2 + ... + 2 N − 1 b N − 1 , где N - количество битов в регистре.

Тем не менее, ничто не мешает рассматривать эти регистры именно как битовые векторы и проводить булевые операции покомпонентно (бит номер k значения есть результат операция от битов номер k аргументов). Кстати, математически говоря, булевы операции распространяются таким образом на произвольную булеву алгебру . Таким образом мы получаем операции побитового И, ИЛИ, НЕ, искл. ИЛИ и т. д. Как арифметические, данные операции не обладают хорошими свойствами за исключением побитового НЕ, которое для чисел в дополнительном коде совпадает с вычитанием из −1 (~x == -1-x). Однако, они очень полезны в программировании.

Битовые сдвиги

К битовым операциям также относят битовые сдвиги. При сдвиге значения битов копируются в соседние по направлению сдвига. Различают несколько видов сдвигов - логический , арифметический и циклический , в зависимости от обработки крайних битов.

Также различают сдвиг влево (в направлении от младшего бита к старшему) и вправо (в направлении от старшего бита к младшему).

Арифметический сдвиг (правый)

Циклический сдвиг

Циклический сдвиг через перенос

Логический сдвиг

При логическом сдвиге значение последнего бита по направлению сдвига теряется (копируясь в бит переноса), а первый приобретает нулевое значение.

Логические сдвиги влево и вправо используются для быстрого умножения и деления на 2, соответственно.

Арифметический сдвиг

Арифметический сдвиг аналогичен логическому, но значение слова считается знаковым числом представленному дополнительным кодом. Так при правом сдвиге старший бит сохраняет свое значение. Левый арифметический сдвиг идентичен логическому.

Циклический сдвиг

При циклическом сдвиге, значение последнего бита по направлению сдвига копируется в первый бит (и копируется в бит переноса).

Также различают циклический сдвиг через бит переноса - при нем первый бит по направлению сдвига получает значение из бита переноса, а значение последнего бита сдвигается в бит переноса.

2-адическая интерпретация

Целое число, записанное (в дополнительном коде) в бесконечный (в сторону положительных степеней двойки) двоичный регистр является естественным объектом для теории p-адических чисел при p = 2 . Множество целых 2-адических чисел (т.е. произвольных бесконечных битовых последовательностей) может быть рассмотрено как булева алгебра точно так же как и множество значений битового регистра конечной длины. Все вышеперечисленные битовые операции оказываются непрерывными отображениями . Хотя практическое программирование не располагает регистрами бесконечной длины, это не мешает использовать данный теоретический факт в криптографии для создания быстродействующих алгоритмов шифрования.

Практические применения

Физическая реализация битовых операций

Реализация битовых операций может в принципе быть любой: механической, электромеханической , гидравлической, пневматической, оптической и даже химической.

В пожароопасных и взрывоопасных условиях до сих пор применяют пневматические логические устройства (пневмоника).

Наиболее распространены электронные реализации битовых операций при помощи транзисторов , например резисторно-транзисторная логика (РТЛ), диодно-транзисторная логика (ДТЛ), эмиттерно-связанная логика (ЭСЛ), транзисторно-транзисторная логика (ТТЛ), N-МОП логика, КМОП логика и др..

В квантовых вычислениях из перечисленных булевых операций реализуются только НЕ и искл. ИЛИ (с некоторыми оговорками). Квантовых аналогов И, ИЛИ и т.д. не существует.

Схемы аппаратной логики

Результат операции ИЛИ-НЕ или ИЛИ ото всех битов двоичного регистра проверяет, равно ли значение регистра нулю; то же самое взятое от выхода искл. ИЛИ двух регистров проверяет равенство их значений между собой.

Битовые операции применяются в знакогенераторах и графических адаптерах ; особенно велика была их роль в адаптере графический ускоритель.

Использование в программировании

Благодаря реализации в арифметическом логическом устройстве (АЛУ) процессора многие их регистровые битовые операции аппаратно доступны в языках низкого уровня . В большинстве процессоров реализованы в качестве инструкции регистровый НЕ; регистровые двухаргументные И, ИЛИ, исключающее ИЛИ; проверка равенства нулю (см. выше); три типа битовых сдвигов, а также циклические битовые сдвиги.

Регистровая операция И используется для сброса конкретных битов по битовой маске, ИЛИ - для установки, исключающее ИЛИ - для инвертирования битов регистра по маске.

Цель работы : Изучение основных приемов размножения объектов с помощью функции «массив»; изучение технологии создания объектов с помощью булевых операций.

Булевы операции

Булевы операции (часто их называют логическими) пришли в 3D графику из математики, точнее, из булевой алгебры (названной в честь ее создателя - Джорджа Буля) и основаны на понятиях объединения, пересечения и исключения. В 3D Studio Max существует три основных булевых операции, результаты применения которых показаны на рисунке 1:
  1. Объединение (соединение объектов в один).
  2. Пересечение (в булевый объект входят только общие части исходных объектов).
  3. Исключение (вырезание).
Рисунок 1. Результаты применения булевых операций.
Объединение . Результирующий объект, полученный объединением двух объектов, содержит все точки двух исходных объектов-операндов, за исключением дубликатов общих точек.

Пересечение . Объект, полученный в результате операции пересечения, содержит только те точки, которые являются общими для двух исходных объектов.

Вычитание . Объект, который получается в результате выполнения этой логической операции, содержит только точки первого объекта за исключением тех точек, которые являются общими для двух объектов. Операция логического вычитания одного объекта из другого является некоммутативной. Другими словами, разность А - В – это не то же самое, что разность В - А .

Использование булевых операций

Булевы операции в 3D Studio Max можно выполнять только над двумя объектами. Эти объекты должны пересекаться, т.е. содержать общие точки. Булевы операции позволяют создавать составные объекты, выполняя операции объединения, вычитания и пересечения частей двух объектов. К булевым операциям можно получить доступ следующим образом (рис. 2).
Рисунок 1. Получение доступа к булевым операциям.

Вначале требуется выделить объект, который будет участвовать в операции первым, т.е. будет объектом А в одном из окон проекций. Затем необходимо щелкнуть на вкладке Create (Создать) панели команд и на кнопке Geometry (Геометрия). В раскрывающемся списке под этой кнопкой выберите режим Compound Objects (Составные объекты). В ветви Object Type (Тип объекта) щелкните на кнопке Boolean (Булевы операции). В панели команд появится свиток с операциями, которые можно выполнять применительно к объектам. Булевы операции упоминают в сочетании с еще одним термином – операндом. Операнд – это переменная, присвоенная выбранным объектам во время выполнения операции. Операнд во многом подобен переменным, используемым в алгебре при составлении уравнений. Например, переменные А и В можно использовать для представления двух объектов, к которым будет применена булева операция.

  • Union (Объединение). Эта функция объединяет два объекта в один и удаляет перекрывающиеся или накладывающиеся области.
  • Intersection (Пересечение). Эта функция создает объект, который содержит только перекрывающиеся области обоих объектов.
  • Substraction (Вычитание [А-В]) и Substraction (Вычитание [В-А]). Эта операция позволяет удалить один из объектов и любые перекрывающиеся области объектов. При операции данного типа выбор А-В приводит к вычитанию объекта В из объекта А, а В-А – к вычитанию объекта А из В.
  • (Добавлена в старших версиях программы) Cut (Разрез). Эта функция рассекает операнд А операндом В. Она работает аналогично модификатору Slice (Сечение), который позволяет рассечь каркас. Обратите внимание на наличие четырех вариантов вырезания: Refine (Уточнение), Split (Расщепление), Remove Inside (Удаление внутри), Remove Outside (Удаление снаружи).
  • Операция Refine добавит в операнд А новые вершины и ребра в местах его пересечения с операндом В. Операция Split рассечет объект на два куска. Операции Remove Inside и Remove Outside удалят из операнда А все грани, которые находятся, соответственно, внутри и снаружи операнда В.
Создание булевых объектов

Объекты типа Boolean (Булевы) создаются за счет применения к оболочкам двух трехмерных тел операций булевой алгебры. Оболочки исходных тел, участвующих в булевой операции – операнды (operands ), обязательно должны пересекаться. Из двух объектов, участвующих в булевой операции, один должен быть выделен до ее начала (операнд А), а другой (операнд В) указывается в ходе операции. После выделения одного из объектов, необходимо выбрать переключатель той операции, которую нужно выполнить. После того, как эти элементы выбраны, следует выбрать переключатель одного из типов копирования:

  • Move (Переместить) – в этом случае в логической операции участвует сам объект. Он пропадет после выполнения операции.
  • Сору (Копия) – в операции участвует копия второго объекта. Сам объект остается при этом без изменения.
  • Reference (Ссылка) – в операции принимает участие ссылка на второй объект.
  • Instance (Экземпляр) – в операции принимает участие экземпляр второго объекта.
Затем потребуется щелкнуть на кнопке Pick Operand В (Выбрать операнд В) и, как только она будет выделена, в окне проекции необходимо выбрать второй объект, применительно к которому нужно выполнить булеву операцию. Приступая к созданию булевых объектов, следует помнить, что иногда они нестабильны и в определенных ситуациях могут приводить к нежелательным результатам. Поэтому, прежде чем применять булевы операции, рекомендуем создать резервную копию текущего проекта, чтобы в случае повреждения объектов их можно было восстановить. В процессе работы с булевыми функциями обнаруживается, что иногда булевы объекты ведут себя крайне нестабильно в случае применения нескольких булевых операций в отношении одних и тех же объектов. Один из возможных методов разрешения этой проблемы – преобразование объекта в редактируемый каркас перед выполнением каждой булевой операции. Это может уменьшить вероятность получения нежелательных результатов.

Создавая объект в сцене, необходимо учитывать особенности его геометрии. Несмотря на то что один и тот же трехмерный объект всегда можно смоделировать несколькими способами, как правило, существует один, который является наиболее быстрым и удобным.

Опытный аниматор с первого взгляда на эскиз будущей модели определяет способ моделирования объекта, однако начинающему пользователю это не всегда под силу.

Одним из наиболее удобных и быстрых способов моделирования является создание трехмерных объектов при помощи булевых операций.

Например, если два объекта пересекаются, на их основе можно создать третий объект, который будет представлять собой результат сложения, вычитания или пересечения исходных объектов.

Модели, создаваемые в трехмерной графике, можно условно разделить на две группы - органические и неорганические. К первой категории относятся объекты живой природы, такие как растения, животные, люди, ко второй - элементы архитектуры, а также предметы, созданные человеком (автомобили, техника и др.).

Разница подходов к моделированию объектов первой и второй группы столь велика, что в зависимости от конкретных задач для реализации проекта могут использоваться различные пакеты для работы с трехмерной графикой.

Поскольку в 3ds max основной акцент делается на моделирование неорганических объектов, то есть архитектурную визуализацию и разработку компьютерных игр, то булевыe операции - это незаменимый инструмент для каждого пользователя 3ds max.

С другой стороны, они совсем не подходят для создания большинства органических объектов. Например, смоделировать лицо человека при помощи булевых операций практически невозможно.

Рассмотрим булевыe операции. На рис. 3.51 представлено исходное изображение. В 3ds max 7 доступны четыре типа булевых операций.

  • Union (Сложение). Результатом булевого сложения двух объектов будет служить поверхность, образованная поверхностями объектов, участвующих в данной операции (рис. 3.52).
  • Intersection (Пересечение). Результатом булевого пересечения двух объектов будет поверхность, состоящая из общих участков этих объектов (рис. 3.53).
  • Subtraction (Исключение). Результатом булевого исключения двух объектов будет поверхность, состоящая из поверхностей первого и второго объектов, но не включающая в себя общие участки этих объектов (рис. 3.54).

Рис. 3.51. Расположение объектов перед выполнением булевых операций

Рис. 3.52. Объекты после выполнения булевой операции Union (Сложение)

Рис. 3.53. Объекты после выполнения булевой операции Intersection (Пересечение)

Рис. 3.54. Объекты после выполнения булевой операции Subtraction (Исключение)

  • Cut (Вычитание). Результатом булевого вычитания двух объектов будет служить поверхность, образованная исключением из поверхности одного объекта участков, занятых вторым объектом (рис. 3.55).

Рис. 3.55. Объекты после выполнения булевой операции Cut (Вычитание)

Булевы операции выполняются следующим образом.

1. Выделите первый объект, который будет участвовать в образовании конечной модели.

2. Перейдите на вкладку Create (Создание) командной панели, выберите в категории Geometry (Геометрия) строку Compound Objects (Составные объекты) и нажмите кнопку Boolean (Булева операция) (рис. 3.56).

3. Установите параметры булевой операции.

4. Воспользуйтесь кнопкой Pick Operand В (Выбрать операнд), чтобы выбрать второй объект, который будет участвовать в операции.

Рис. 3.56. Настройки объекта Boolean (Булева операция)

ПРИМЕЧАНИЕ

Несмотря на то что булевыe операции 3ds max 7 широко применяются при создании трехмерных проектов, они имеют ряд недостатков, и построение оболочки результирующей модели нередко происходит с ошибками. По этой причине многие разработчики трехмерной графики используют в своих проектах дополнительный модуль Power Booleans . Он позволяет создавать модели с более точной геометрией, чем те, которые можно получить, используя стандартные средства, а также быстрее строит полигональную сетку. Это особенно заметно при работе с объектами, имеющими большое количество полигонов.

Моделирование с использованием булевых операций подробно рассмотрено в разд. «Урок 6. Моделирование винта».