Решить уравнение химической реакции. Химические уравнения

1) Для того,чтобы расставить расставить коэффициенты в уравнении химической реакции онлайн вставьте уравнение и нажмите "Уравнять"

2) Символы химических элементов следует записывать строго в том виде, в котором они фигурируют в таблице Менделеева. Т.е. первая буква в обозначении символа любого химического элемента должна быть заглавной, а вторая строчной. Например, символ химического элемента марганца следует записать как Mn, но не ни в коем случае как mn и mN;

3) Изредка возникают ситуации, когда формулы реагентов и продуктов записаны абсолютно верно, но коэффициенты все равно не расставляются. Такое может возникать в тех случаях, если коэффициенты в уравнении могут быть расставлены двумя или более способами. Наиболее вероятно возникновение такой проблемы с реакциями окисления органических веществ при которых рвется углеродный скелет. В таком случае попробуйте заменить неизменяемые фрагменты органических молекул на какой-нибудь произвольный символ, например радикал фенил C 6 H 5 можно обозначить как Ph или X. Например, следующее уравнение:

C 6 H 5 CH 2 CH 3 + KMnO 4 + H 2 SO 4 → C 6 H 5 COOH + CO 2 + K 2 SO 4 + MnSO 4 + H 2 O

не будет сбалансировано, так как возможна разная расстановка коэффициентов. Однако, введя обозначение C 6 H 5 = Ph, расстановка коэффициентов происходит корректно:

5PhCH 2 CH 3 + 12KMnO 4 + 18H 2 SO 4 → 5PhCOOH + 5CO 2 + 6K 2 SO 4 + 12MnSO 4 + 28H 2 O

Примечание

В уравнении допускается для разделения формул реагентов от формул продуктов использовать как знак равенства (=), так и стрелку (→), а также случайная запись отдельных букв символов химических элементов не латиницей, а кириллицей в случае их идентичного написания, как, например, символов C, H, O, P.

Определение

Химическое уравнение -это условная запись химической реакции с помощью химических формул и коэффициентов.

Чтобы правильно расставлять коэффициенты в химическом уравнении следует понимать разницу между коэффициентами и индексами.

Определение

Коэффициент - показывает число молекул и изображается большой цифрой перед молекулярной формулой вещества. Индекс - показывает число атомов элемента в одной молекуле вещества, изображается справа внизу от символа элемента.

Чтобы посчитать общее количество атомов нужно умножить количество молекул на количество атомов элемента в одной молекуле. Например, справа изображена запись трех молекул серной кислоты (брутто-формула), а снизу - вариант структурной записи. Так, одна молекула серной кислоты состоит три из трех элементов и всего содержит (2+1+4)=7 атомов: 2 атома водорода, один атом серы и четыре атома кислорода. В трех молекулах будет в три раза больше атомов, то есть 3*2=6 атомов водорода, 3*1=3 атома серы и 3*4=12 атомов кислорода. Это хорошо видно из структурной формулы, приведенной ниже.

Чтобы понять логику уравнивания химических реакций попробуйте дома потренироваться с самостоятельно изготовленными моделями атомов и молекул: приготовьте из пластилина шарики разного цветы (серого, красного и черного). Попробуйте осуществить реакцию горения метана, схема которой изображена ниже.

При моделировании будет очевидно, что количество атомов (самодельных пластилиновых шариков) каждого элемента (цвета) не меняется в ходе реакции. То есть количество атомов углерода до и после превращения остается неизменным и равно одному (один черный шарик). Две молекулы кислорода в левой части уравнения состоят из 4-х атомов, в правой части уравнения два атома кислорода содержится в углекислом газе ($CO_2$) и два атома- в двух молекулах воды, то есть всего справа также 4 атома кислорода.

Закон действующих масс

При составлении уравнений реакций необходимо использовать закон сохранения массы веществ (закон действующих масс или ЗДМ), открытый М.В. Ломоносовым и А.Лавуазье.

Закон действующих масс : масса веществ, вступивших в реакцию, равна массе веществ, получившихся в результате её.

Так как вещества состоят из атомов, то при составлении химических уравнений, мы будем пользоваться правилом: число атомов каждого химического элемента исходных веществ должно равняться числу атомов в продуктах реакции. В химической реакции число взаимодействующих атомов остается неизменным, происходит только их перегруппировка с разрушением исходных веществ

Алгоритм составления уравнений реакций.

Рассмотрим алгоритм составления химических уравнений на примере взаимодействия простых веществ: металлов и неметаллов друг с другом. Пусть взаимодействуют фосфор и кислород (реакция горения).

1.Записывают рядом исходные вещества (реагенты) , между ними ставим знак "+"(здесь мы будем учитывать то, что кислород двухатомная молекула), а после них стрелку - как знак равенства.

$P+O_2 \rightarrow$

2.Записываем после стрелки формулу продукта реакции:

$P+O_2\rightarrow P_2O_5$

3.Из схемы видно, что слева кислорода-2 атома, справа-5, а в соответствии с законом сохранения массы веществ, число атомов данного химического элемента должно быть одинаковым. Чтобы уравнять их число, находим наименьшее общее кратное. Для 2 и 5 это будет число 10. Делим наименьшее общее кратное на число атомов в формулах. 10:2=5, 10:5=2, это и будут коэффициенты, которые ставятся соответственно перед кислородом $O_2$ и оксидом фосфора (V) $P_2O_5$.

$P+5O_2\rightarrow 2P_2O_5$

кислорода слева и справа стало по 10(5·2=10, 2·5=10)

4.Коэффициент относится ко всей формуле и ставится перед ней. После его постановки справа фосфора стало 2·2=4 атома. А слева 1 (коэффициент 1 не ставится).Значит перед фосфором ставим коэффициент 4.

$4P + 5O_2\rightarrow 2P_2O_5$

Это и есть окончательная запись химического уравнения.

Читается: четыре пе плюс пять о-два равняется два пе-два о-пять.

Разберем алгоритм проставления коэффициентов на другом примере:

$KNO_3 = KNO_2 + O_2$

при разложении нитрата калия образуется нитрит калия и кислород.

В левой части уравнения один атом калия, в правой - тоже один. Количество атомов азота слева и справа одинаково и равно одному. А вот количество атомов кислорода различно: слева - 3, справа - 4. В подобных случаях можно прибегнуть к удвоению, то есть поставить коэффициент =2 перед нитратом калия.

Для того, чтобы научится уравнивать химические уравнения, сначала нужно выделять главные моменты и использовать правильный алгоритм.

Ключевые моменты

Выстроить логику процесса несложно. Для этого выделим следующие этапы:

  1. Определение типа реагентов (все реагенты органические, все реагенты неорганические, органические и неорганические реагенты в одной реакции)
  2. Определение типа химической реакции (реакция с изменением степеней окисления компонентов или нет)
  3. Выделение проверочного атома или группы атомов

Примеры

  1. Все компоненты неорганические, без изменения степени окисления, проверочным атомом будет кислород – О (его не затронули никакие взаимодействия:

NaОН + НCl = NaCl + H2O

Посчитаем количество атомов каждого элементов правой и левой части и убедимся, что здесь не требуется расстановка коэффициентов (по умолчанию отсутствие коэффициента – это коэффициент равный 1)

NaOH + H2SO4 = Na2 SO4 + H2O

В данном случае, в правой части уравнения мы видим 2 атома натрия, значит в левой части уравнения нам нужно подставить коэффициент 2 перед соединением, содержащим натрий:

2 NaOH + H2SO4 = Na2 SO4 + H2O

Проверяем по кислороду - О: в левой части 2О из NaОН и 4 из сульфат иона SO4, а в правой 4 из SO4 и 1 в воде. Добавляем 2 перед водой:

2 NaOH + H2SO4 = Na2 SO4 +2 H2O

  1. Все компоненты органические, без изменения степени окисления:

НООС-СOOH + CH3OH = CH3OOC-COOCH3 + H2O (реакция возможна при определенных условиях)

В данном случае мы видим, что в правой части 2 группы атомов CH3, а в левой только одна. Добавляем в левую часть коэффициент 2 перед CH3OH, проверяем по кислороду и добавляем 2 перед водой

НООС-СOOH + 2CH3OH = CH3OOC-COOCH3 + 2H2O

  1. Органический и неорганические компоненты без изменения степеней окисления:

CH3NH2 + H2SO4 = (CH3NH2)2∙SO4

В данной реакции проверочный атом необязателен. В левой части 1 молекула метиламина CH3NH2, а в правой 2. Значит нужен коэффициент 2 перед метиламином.

2CH3NH2 + H2SO4 = (CH3NH2)2∙SO4

  1. Органический компонент, неорганический, изменение степени окисления.

СuO + C2H5OH = Cu + CH3COOH + Н2O

В данном случае необходимо составить электронный баланс, а формулы органических веществ лучше преобразовать в брутто. Проверочным атомом будет кислород – по его количеству видно, что коэффициенты не требуются, электронный баланс подтверждает

CuO + C2H6O = Cu + C2H4O2

2С +2 - 2е = 2С0

C3H8 + O2 = CO2 + H2O

Здесь O не может быть проверочным, так как сам меняет степень окисления. Проверяем по Н.

О2 0 + 2*2 е = 2O-2 (речь идет о кислороде из CO2)

3С (-8/3) - 20е = 3С +4 (в органических окислительно-восстановительных реакциях используют условные дробные степени окисления)

Из электронного баланса видно, что для окисления углерода требуется в 5 раз больше кислорода. Ставим 5 перед O2, также из электронного баланса м должны поставить 3 перед С из СО2, проверим по Н, и поставим 4 перед водой

C3H8 + 5O2 = 3CO2 + 4H2O

  1. Неорганические соединения, изменение степеней окисления.

Na2SO3 + KMnO4 + H2SO4 = Na2SO4 + K2SO4 + Н2О + MnO2

Проверочными будут водороды в воде и кислотные остатки SO4 2- из серной кислоты.

S+4 (из SO3 2-) – 2e = S +6(из Na2SO4)

Mn+7 + 3e = Mn+4

Таким образом нужно поставить 3 перед Na2SO3 и Na2SO4, 2 перед КМnO4 и MNO2.

3Na2SO3 + 2KMnO4 + H2SO4 = 3Na2SO4 + K2SO4 + Н2О +2MnO2

История

Титульный лист Tyrocinium Chymicum.

Сначала не было представления о химических уравнениях, ещё не были известны основные химические законы, но уже в стародавние времена, в алхимический период развития химии начали обозначать химические элементы символами.

С дальнейшим развитием химии менялись представления о символике химических элементов , расширялись знания об их соединениях. С открытием множества химических явлений возникла необходимость в переходе от их словесного описания к более удобной математической записи, используя химические формулы . Первым предложил использовать химические уравнения Жан Бегун (Jean Beguin) в 1615 году в первом учебнике по химии Tyrocinium Chymicum («Начала химии»).

Конец XVIII - начало XIX вв.-становление законов стехиометрии. У истоков этих исследований стоял немецкий ученый И. В. Рихтер . В студенческие годы на него большое впечатление произвели слова его учителя - философа И. Канта о том, что в отдельных направлениях естественных наук истинной науки столько, сколько в ней математики. Рихтер посвятил свою диссертацию использованию математики в химии. Не будучи в сущности химиком, Рихтер ввел первые количественные уравнения химических реакций, стал использовать термин стехиометрия .

Правила составления

В левой части уравнения записывают формулы(формулу) веществ, вступивших в реакцию, соединяя их знаком "плюс". В правой части уравнения записывают формулы(формулу) образовавшихся веществ, также соединенных знаком "плюс". Между частями уравнения ставят стрелку. Затем находят коэффициенты - числа, стоящие перед формулами веществ, чтобы число атомов одинаковых элементов в левой и правой частях уравнения было равным.

Для составления уравнений химических реакций, кроме знания формул реагентов и продуктов реакции, необходимо верно подобрать коэффициенты. Это можно сделать, используя несложные правила:

1. Перед формулой простого вещества можно записывать дробный коэффициент, который показывает количество вещества реагирующих и образующихся веществ.

2. Если в схеме реакции есть формула соли, то вначале уравнивают число ионов, образующих соль .

3. Если участвующие в реакции вещества содержат водород и кислород, то атомы водорода уравнивают в предпоследнюю очередь, а атомы кислорода - в последнюю.

4. Если в схеме реакции имеется несколько формул солей, то необходимо начинать уравнивание с ионов, входящих в состав соли, содержащей большее их число.

Символы в химических уравнениях

Для обозначения различных типов реакций используются следующие символы:

Расстановка коэффициентов в уравнениях

Закон сохранения массы гласит, что количество вещества каждого элемента до реакции равняется количеству вещества каждого элемента после реакции. Таким образом, левая и правая части химического уравнения должны иметь одинаковое количество атомов того или иного элемента. Химическое уравнение должно быть электронейтрально, то есть сумма зарядов в левой и правой части уравнения в сумме должны давать ноль. Одним из способов уравнивания количества атомов в химическом уравнении является подбор коэффициентов методом проб и ошибок. Для более сложных случаев следует использовать систему линейных алгебраических уравнений. Как правило,химические уравнения записываются с наименьшими целочисленными коэффициентами. В случае если перед химической формулой нет коэффициента, подразумевается что он равен единице. Проверка материального баланса, то есть количества атомов с левой и правой части, может быть следующей: перед самой сложной химической формулой ставится коэффициент 1. Далее расставляются коэффициенты перед формулами таким образом, что бы количество атомов каждого из элементов в левой и правой части уравнения было равно. Если один из коэффициентов - дробный, то следует умножить все коэффициенты на число стоящее в знаменателе дробного коэффициента. Если перед формулой коэффициент 1, то его опускают. Пример, расстановка коэффициентов в химической реакции горение метана:

1CH 4 + O 2 CO 2 + H 2 O

Количество атомов углерода с левой и правой сторон одинаково. Следующий элемент, который следует уравнять - водород. Слева 4 атома водорода, справа 2, чтобы уравнять количество атомов водорода следует поставить коэффициент 2 перед водой, в результате:

1CH 4 + O 2 CO 2 + 2H 2 O

Проверка правильности расстановки коэффициентов в любом химическом уравнении производится подсчетом количества атомов кислорода, если в левой и правой части количество атомов кислорода одинаково, значит коэффициенты расставлены правильно.

1CH 4 + 2O 2 CO 2 + 2H 2 O

Перед молекулами CH 4 и CO 2 коэффициент 1 опускают.

Окислительно-восстановительные реакции

Окислительно-восстановительные реакции (ОВР) - это встречно-параллельные химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, реализующихся путём перераспределения электронов между атомом-окислителем и атомом-восстановителем.

В процессе окислительно-восстановительной реакции восстановитель отдаёт электроны, то есть окисляется; окислитель присоединяет электроны, то есть восстанавливается. Причём любая окислительно-восстановительная реакция представляет собой единство двух противоположных превращений - окисления и восстановления, происходящих одновременно и без отрыва одного от другого.

Окисление - процесс отдачи электронов, с увеличением степени окисления. При окислении вещества в результате отдачи электронов увеличивается его степень окисления. Атомы окисляемого вещества называются донорами электронов, а атомы окислителя - акцепторами электронов. Окислитель, принимая электроны, приобретает восстановительные свойства, превращаясь в сопряжённый восстановитель.

Восстановлением называется процесс присоединения электронов атомом вещества, при этом его степень окисления понижается. При восстановлении атомы или ионы присоединяют электроны. При этом происходит понижение степени окисления элемента. Восстановитель, отдавая электроны, приобретает окислительные свойства, превращаясь в сопряжённый окислитель.

При составлении уравнения окислительно-восстановительной реакции необходимо определить восстановитель, окислитель и число отдаваемых и принимаемых электронов. Как правило, коэффициенты подбирают, используя либо метод электронного баланса , либо метод электронно-ионного баланса (иногда последний называют методом полуреакций).

Подбор коэффициентов методом электронного баланса.

В простых уравнениях коэффициенты подбирают поэлементно в соответствии с формулой конечного продукта. В более сложных уравнениях окислительно-восстановительных реакций подбор коэффицентов проводят методом электронного баланса:

1. Записывают схему реакции (формулу реагентов и продуктов), а затем находят элементы, которые повышают и понижают свои степени окисления, и выписывают их отдельно;

2. Составляют уравнения полуреакций восстановления и окисления, соблюдая законы сохранения числа атомов и заряда в каждой полуреакции;

3. Подбирают дополнительные множители для уравнивания полуреакций так, чтобы закон сохранения заряда выполнялся для реакции в целом, для чего число принятых элементов в полуреакциях восстановления делают равным числу отданных элементов в полуреакции окисления;

4. Проставляют (по найденным множителям) стехиометрические коэффициенты в схему реакции (коэффициент 1 опускается);

5. Уравнивают числа атомов тех элементов, которые не изменяют своей степени окисления при протекании реакции (если таких элементов два, то достаточно уравнять число атомов одного из них, а по второму провести проверку). Получают уравнения химической реакции;

6. Проводят проверку по элементу, который не менял свою степень окисления (чаще всего это кислород).

Расстановка коэффициентов в ионных уравнениях

Ионные уравнения - это химические уравнения, в которых электролиты записаны в виде диссоциировавших ионов. Ионные уравнения используются для записи реакций замещения и реакций обмена в водных растворах. Пример, реакция обмена, взаимодействие хлорида кальция и нитрата серебра с образованием осадка хлорида серебра:

CaCl 2 (ж) + 2AgNO 3 (ж) Ca(NO 3) 2 (ж) + 2AgCl(тв)

полное ионное уравнение:

Ca 2+ + 2Cl − + 2Ag + + 2NO 3 − Ca 2+ + 2NO 3 − + 2AgCl(тв)

сокращенное ионное уравнение:

2Cl − (ж) + 2Ag + (ж) 2AgCl(тв)

ионное уравнение:

Ag + + Cl − AgCl(тв)

Ионы Ca 2+ и NO 3 − остаются в растворе, поэтому не являются участниками химической реакции. В реакциях нейтрализации ионное уравнение реакции выглядит следующим образом:

H + + OH − H 2 O

Существует несколько реакций нейтрализации, которые дают еще одно мало диссоциирующее вещество помимо воды. Примером может служить реакция гидроксида бария с фосфорной кислотой, так как образуется нерастворимый в воде фосфат бария.

Литература

  1. Левицкий М. Язык химиков // Химия и жизнь. – 2000. –№1. – С.50-52.
  2. Кудрявцев А.А. Составление химических уравнений - 4-е издание, перераб. и доп., 1968 - 359с.
  3. Берг Л.Г. Громаков С.Д. Зороацкая И.В. Аверко-Антонович И.Н. Способы подбора коэффициентов в химических уравнениях - Казань: изд-во Казанского ун-та, 1959.- 148 с.
  4. Леенсон И.А. Чет или нечет - М.: Химия, 1987. - 176с.
  5. Химия, учебник 8 класса. Издательство ARC. 2003.
  6. Химия, учебник 8 класса. Издательство Дрофа. 2009.
  7. Химия, учебник 8 класса. Издательство "Мектеп" алматы. 2012.
  8. Химия, учебник 9 класса. Издательство "Просвещение" 2008.

См. также

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.

Класс: 8

Презентация к уроку
























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: помочь обучающимся сформировать знания о химическом уравнении как об условной записи химической реакции с помощью химических формул.

Задачи:

Образовательные:

  • систематизировать ранее изученный материал;
  • обучать умению составлять уравнения химических реакций.

Воспитательные:

  • воспитывать коммуникативные навыки (работа в паре, умение слушать и слышать).

Развивающие:

  • развивать учебно-организационные умения, направленные на выполнение поставленной задачи;
  • развивать аналитические навыки мышления.

Тип урока: комбинированный.

Оборудование: компьютер, мультимедийный проектор, экран, оценочные листы, карта рефлексии, “набор химических знаков”, тетрадь с печатной основой, реактивы: гидроксид натрия, хлорид железа(III), спиртовка, держатель, спички, лист ватмана, разноцветные химические знаки.

Презентация урока (приложение 3)

Структура урока.

І. Организационный момент.
ІІ. Актуализация знаний и умений.
ІІІ. Мотивация и целеполагание.
ІV. Изучение нового материала:
4.1 реакция горения алюминия в кислороде;
4.2 реакция разложения гидроксида железа (III);
4.3 алгоритм расстановки коэффициентов;
4.4 минута релаксации;
4.5 расставь коэффициенты;
V. Закрепление полученных знаний.
VІ. Подведение итогов урока и выставление оценок.
VІІ. Домашнее задание.
VІІІ. Заключительное слово учителя.

Ход урока

Химическая натура сложной частицы
определяется натурой элементарных
составных частей,
количеством их и
химическим строением.
Д.И.Менделеев

Учитель. Здравствуйте, ребята. Садитесь.
Обратите внимание: у вас на столе лежит тетрадь с печатной основой (Приложение 2), в которой вы сегодня будете работать, и оценочный лист, в нем вы будете фиксировать свои достижения, подпишите его.

Актуализация знаний и умений.

Учитель. Мы с вами познакомились с физическими и химическими явлениями, химическими реакциями и признаками их протекания. Изучили закон сохранения массы веществ.
Давайте проверим ваши знания. Я предлагаю вам открыть тетради с печатной основой и выполнить задание 1. На выполнение задания вам дается 5 минут.

Тест по теме “Физические и химические явления. Закон сохранения массы веществ”.

1.Чем химические реакции отличаются от физических явлений?

  1. Изменение формы, агрегатного состояния вещества.
  2. Образование новых веществ.
  3. Изменение местоположения.

2. Каковы признаки химической реакции?

  1. Образование осадка, изменение цвета, выделение газа.
  • Намагничивание, испарение, колебание.
  • Рост и развитие, движение, размножение.
  • 3. В соответствии с каким законом составляются уравнения химических реакций?

    1. Закон постоянства состава вещества.
    2. Закон сохранения массы вещества.
    3. Периодический закон.
    4. Закон динамики.
    5. Закон всемирного тяготения.

    4. Закон сохранения массы вещества открыл:

    1. Д.И. Менделеев.
    2. Ч. Дарвин.
    3. М.В. Ломоносов.
    4. И. Ньютон.
    5. А.И. Бутлеров.

    5. Химическим уравнением называют:

    1. Условную запись химической реакции.
  • Условную запись состава вещества.
  • Запись условия химической задачи.
  • Учитель. Вы выполнили работу. Я предлагаю вам осуществить ее проверку. Поменяйтесь тетрадями и осуществите взаимопроверку. Внимание на экран. За каждый правильный ответ – 1 балл. Общее количество баллов занесите в оценочные листы.

    Мотивация и целеполагание.

    Учитель. Используя эти знания, мы сегодня будем составлять уравнения химических реакций, раскрывая проблему “Является ли закон сохранения массы веществ основой для составления уравнений химических реакций”

    Изучение нового материала.

    Учитель. Мы привыкли считать, что уравнение-это математический пример, где есть неизвестное, и это неизвестное нужно вычислить. А вот в химических уравнениях обычно ничего неизвестного не бывает: в них просто записывается все формулами: какие вещества вступают в реакцию и какие получаются в ходе этой реакции. Посмотрим опыт.

    (Реакция соединения серы и железа.) Приложение 3

    Учитель. С точки зрения массы веществ, уравнение реакции соединения железа и серы понимается следующим образом

    Железо + сера → сульфид железа (II) (задание 2 тпо)

    Но в химии слова отражаются химическими знаками. Запишите это уравнение химическими символами.

    Fe + S → FeS

    (Один ученик пишет на доске, остальные в ТПО.)

    Учитель. Теперь прочитайте.
    Обучающиеся. Молекула железа взаимодействует с молекулой серы, получается одна молекула сульфида железа (II).
    Учитель. В данной реакции мы видим, что количество исходных веществ равно количеству веществ в продукте реакции.
    Всегда надо помнить, что при составлении уравнений реакций ни один атом не должен потеряться или неожиданно появиться. Поэтому иногда, записав все формулы в уравнении реакции, приходиться уравнивать число атомов в каждой части уравнения – расставлять коэффициенты. Посмотрим еще один опыт

    (Горение алюминия в кислороде.) Приложение 4

    Учитель. Запишем уравнение химической реакции (задание 3 в ТПО)

    Al + O 2 → Al +3 O -2

    Чтобы записать правильно формулу оксида, вспомним что

    Обучающиеся. Кислород в оксидах имеет степень окисления -2, алюминий – химический элемент с постоянной степенью окисления +3. НОК = 6

    Al + O 2 → Al 2 O 3

    Учитель. Мы видим, что в реакцию вступает 1 атом алюминия, образуется два атома алюминия. Вступает два атома кислорода, образуется три атома кислорода.
    Просто и красиво, но неуважительно по отношению к закону сохранения массы веществ – она разная до и после реакции.
    Поэтому нам необходимо расставить коэффициенты в данном уравнении химической реакции. Для этого найдем НОК для кислорода.

    Обучающиеся. НОК = 6

    Учитель. Перед формулами кислорода и оксида алюминия ставим коэффициенты, чтобы число атомов кислорода слева и справа было равно 6.

    Al + 3 O 2 → 2 Al 2 O 3

    Учитель. Теперь получаем, что в результате реакции образуется четыре атома алюминия. Следовательно, перед атомом алюминия в левой части ставим коэффициент 4

    Al + 3O 2 → 2Al 2 O 3

    Еще раз пересчитаем все атомы до реакции и после нее. Ставим равно.

    4Al + 3O 2 _ = 2 Al 2 O 3

    Учитель. Рассмотрим еще один пример

    (Учитель демонстрирует опыт по разложению гидроксида железа (III).)

    Fe(OH) 3 → Fe 2 O 3 + H 2 O

    Учитель. Расставим коэффициенты. В реакцию вступает 1 атом железа, образуется два атома железа. Следовательно, перед формулой гидроксида железа (3) ставим коэффициент 2.

    Fe(OH) 3 → Fe 2 O 3 + H 2 O

    Учитель. Получаем, что в реакцию вступает 6 атомов водорода (2х3), образуется 2 атома водорода.

    Обучающиеся. НОК =6. 6/2 = 3. Следовательно, у формулы воды ставим коэффициент 3

    2Fe(OH) 3 → Fe 2 O 3 + 3 H 2 O

    Учитель. Считаем кислород.

    Обучающиеся. Слева – 2х3 =6; справа – 3+3 = 6

    Обучающиеся. Количество атомов кислорода,вступивших в реакцию, равно количеству атомов кислорода, образовавшихся в ходе реакции. Можно ставить равно.

    2Fe(OH) 3 = Fe 2 O 3 +3 H 2 O

    Учитель. Теперь давайте обобщим все сказанное ранее и познакомимся с алгоритмом расстановки коэффициентов в уравнениях химических реакций.

    1. Подсчитать количество атомов каждого элемента в правой и левой части уравнения химической реакции.
    2. Определить, у какого элемента количество атомов меняется, найти НОК.
    3. Разделить НОК на индексы – получить коэффициенты. Поставить их перед формулами.
    4. Пересчитать количество атомов, при необходимости действие повторить.
    5. Последним проверить количество атомов кислорода.

    Учитель. Вы хорошо потрудились и, наверное, устали. Я предлагаю вам расслабиться, закрыть глаза и вспомнить какие-либо приятные моменты жизни. У каждого из вас они разные. Теперь откройте глаза и сделайте круговые движения ими сначала по часовой стрелке, затем – против. Теперь интенсивно подвигайте глазами по горизонтали: направо – налево, и вертикали: вверх – вниз.
    А сейчас активизируем мыслительную деятельность и помассируем мочки ушей.

    Учитель. Продолжаем работу.
    В тетрадях с печатной основой выполним задание 5. Работать вы будете в парах. Вам необходимо расставить коэффициенты в уравнених химических реакций. На выполнение задания дается 10 минут.

    • P + Cl 2 →PCl 5
    • Na + S → Na 2 S
    • HCl + Mg →MgCl 2 + H 2
    • N 2 + H 2 →NH 3
    • H 2 O → H 2 + O 2

    Учитель. Проверим выполнение задания (учитель опрашивает и выводит на слайд правильные ответы) . За каждый правильно поставленный коэффициент – 1 балл.
    С заданием вы справились. Молодцы!

    Учитель. Теперь давайте вернемся к нашей проблемы.
    Ребята, как вы считаете, является ли закон сохранения массы веществ основой для составления уравнений химических реакций.

    Обучающиеся. Да, в ходе урока мы доказали, что закон сохранения массы веществ – основа для составления уравнений химических реакций.

    Закрепление знаний.

    Учитель. Все основные вопросы мы изучили. Теперь выполним небольшой тест, который позволит увидеть, как вы освоили тему. Вы должны на него отвечать только “да” или “нет”. На работу дается 3 минуты.

    Утверждения.

    1. В реакции Ca + Cl 2 → CaCl 2 коэффициенты не нужны. (Да)
    2. В реакции Zn + HCl → ZnCl 2 + H 2 коэффициент у цинка 2. (Нет)
    3. В реакции Ca + O 2 → CaO коэффициент у оксида кальция 2. (Да)
    4. В реакции CH 4 → C + H 2 коэффициенты не нужны. (Нет)
    5. В реакции CuO + H 2 → Cu + H 2 O коэффициент у меди 2. (Нет)
    6. В реакции C + O 2 → CO коэффициент 2 надо поставить и у оксида углерода (II) , и у углерода. (Да)
    7. В реакции CuCl 2 + Fe → Cu + FeCl 2 коэффициенты не нужны. (Да)

    Учитель. Проверим выполнение работы. За каждый правильный ответ – 1 балл.

    Итог урока.

    Учитель. Вы справились хорошо с заданием. Сейчас подсчитайте общее количество набранных баллов за урок и поставьте себе оценку согласно рейтингу, который вы видите на экране. Сдайте мне оценочные листы для выставления вашей оценки в журнал.

    Домашнее задание.

    Учитель. Наш урок подошел к концу, в ходе которого мы смогли доказать, что закон сохранения массы веществ является основой для составления уравнений реакций, и научились составлять уравнения химических реакций. И, как финальная точка, запишите домашнее задание

    § 27, упр. 1 – для тех, кто получил оценку “3”
    упр. 2– для тех, кто получил оценку “4”
    упр. 3 – для тех, кто получил оценку
    “5”

    Заключительное слово учителя.

    Учитель. Я благодарю вас за урок. Но прежде чем вы покинете кабинет, обратите внимание на таблицу (учитель показывает на лист ватмана с изображением таблицы и разноцветными химическими знаками). Вы видите химические знаки разного цвета. Каждый цвет символизирует ваше настроение.. Я предлагаю вам составить свою таблицу химических элементов (она будет отличаться от ПСХЭ Д.И.Менделеева) – таблицу настроения урока. Для этого вы должны подойти к нотному листу, взять один химический элемент, согласно той характеристике, которую вы видите на экране, и прикрепить в ячейку таблицы. Я сделаю это первой, показав вам свою комфортность от работы с вами.

    F Мне было на уроке комфортно, я получил ответ на все интересующие меня вопросы.

    F На уроке я достиг цели наполовину.
    F Мне на уроке было скучно, я ничего не узнал нового .