Продуктом азотистого обмена у полоза большеглазого является. Конечные продукты азотистого обмена (белкового)

Мочевая кислота является одним из наиболее важных конечных продуктов азотистого обмена у человека. В норме ее концентрация в сыворотке крови у мужчин составляет 0,27- 0,48 ммоль*л1, у женщин 0,18-0,38 ммоль*л-1; суточная экскреция с мочой колеблется от 2,3 до 4,5 ммоль (400-750 мг). У человека экскретируется мочевая кислота, у многих млекопитающих имеется фермент уриказа, которая окисляет мочевую кислоту до аллантоина. В теле здорового человека в сутки образование и выделение мочевой кислоты составляет от 500 до 700 мг. Большая часть мочевой кислоты (до 80 %) образуется в результате метаболизма эндогенных нуклеиновых кислот, лишь около 20 % связано с пуринами, поступающими с пищей. Почки за сутки экскретируют около 500 мг мочевой кислоты, 200 мг удаляются через желудочно-кишечный тракт.

Мочевая кислота свободно фильтруется в клубочках почки у человека; в почечных канальцах она подвергается как реабсорбции, так и секреции. В нормальных условиях до 98 % профильтровавшейся мочевой кислоты реабсорбируется.

Изучены механизмы канальцевого транспорта мочевой кислоты и способы регуляции этого процесса. При реабсорбции эта кислота переносится через мембрану щеточной каемки и базолатеральную мембрану клетки проксимального канальца. He исключена возможность всасывания части мочевой кислоты через зону клеточных контактов. Секреция уратов из крови в просвет проксимального канальца зависит от наличия в базальной плазматической мембране анионообменного механизма, обеспечивающего поступление мочевой кислоты в клетку и ее последующее выведение через мембрану щеточной каемки в просвет канальца.

Увеличение клиренса и экскреции мочевой кислоты наблюдается при увеличении диуреза, вызванном введением воды, маннитола, физиологического раствора. Одной из причин урикозурии является увеличение объема внеклеточной жидкости и снижение проксимальной реабсорбции; уменьшение экскреции мочевой кислоты описано при усилении реабсорбции натрия в проксимальном канальце, например при застойной сердечной недостаточности. Введение малых доз салицилатов и фенилбутазона сопровождается снижением экскреции уратов почкой и развитием гиперурикемии, в больших дозах оба эти вещества вызывают урикозурию. Объяснить этот парадоксальный эффект можно тем, что система секреции высокочувствительна к действию этих веществ и они блокируют ее уже в малых дозах, выделение уратов снижается; при введении больших количеств препаратов ингибируется система реабсорбции мочевой кислоты и наблюдается урикозурический эффект. Реабсорбция и секреция мочевой кислоты угнетаются пробенецидом, секреция - пиразиноевой кислотой.

Мочевая кислота имеет рКa 5,75, т.е. при pH мочи ниже этой величины ее растворимость очень мала, она становится недиссоциированной. Так как pH мочи в ее конечных отделах может снижаться до величин, равных 4,4, то это будет способствовать образованию малорастворимых форм мочевой кислоты. Образованию ее кристаллов благоприятствует также всасывание больших количеств воды в почечных канальцах и гиперурикемия, способствующая увеличению концентрации мочевой кислоты в моче. Однако в почечных канальцах у здоровых людей создаются условия, при которых не происходит образования почечных камней. Механизм этого явления неясен.

Циркадный ритм экскреции мочевой кислоты напоминает ритм выделения натрия - в ночные часы выведение мочевой кислоты почти в 2 раза меньше, чем утром в период с 1 до 10 ч.

При анализе причин повышенной концентрации мочевой кислоты в крови (гиперурикемия) необходимо проанализировать следующие возможности: 1) увеличение скорости синтеза мочевой кислоты, 2) уменьшение клубочковой фильтрации, 3) увеличение канальцевой реабсорбции, 4) снижение канальцевой секреции. Следует учитывать, что некоторые фармакологические средства могут влиять на транспорт мочевой кислоты в почечных канальцах. Так, пиразинамид быстро уменьшает экскрецию мочевой кислоты и вызывает гиперурикемию.

Креатинин. В сыворотке крови у здоровых мужчин концентрация креатинина составляет 0,6-1,2 мг*100 мл-1 (0,053-0,106 ммоль*л-1), у женщин - 0,5-1,1 мг*100 мл-1 (0,044-0,097 ммоль*л-1). Суточная экскреция креатинина почками у мужчины (70 кг) составляет 0,98-1,82 г (8,7-16,1 ммоль), у женщин на 20-25 % меньше. Креатинин образуется из креатинфосфата, являющегося важнейшим компонентом мышечных клеток. После отщепления фосфата от креатинфосфорной кислоты образуется креатин, потеря молекулы воды приводит к появлению креатинина.

Количество креатинина, ежедневно образующегося в организме человека, является довольно постоянной величиной, которая зависит от мышечной массы тела. Поэтому содержание креатинина в крови и его выделение почками определяются полом, возрастом, развитием мышечной массы, интенсивностью обмена. В меньшей степени оно зависит от рациона, определенную роль играет содержание мяса в пище.

Креатинин полностью фильтруется в почечных клубочках. Небольшие его количества сек-ретируются клетками проксимального канальца, в некоторых случаях эта величина достигает 28 % по отношению к количеству креатинина, поступившего в просвет нефрона при фильтрации. В эксперименте показано, что секреция креатинина угнетается при введении гиппурана, диодраста, пробенецида. Система секреции креатинина подчинена гормональному контролю. При введении человеку кортизона клиренс креатинина снижается до величины одновременно измеренного клиренса инулина, что свидетельствует об угнетении секреции креатинина. При низкой скорости мочеотделения (меньше 0,5 мл*мин-1) значительные количества креатинина могут реабсорбироваться.

Однако следует признать, что в обычной клинической практике измерение клиренса эндогенного креатинина служит довольно точным отражением величины клубочковой фильтрации. Суточное образование креатинина в организме меняется мало, поэтому при поражении клубочков уменьшается объем фильтруемой жидкости и нарастает концентрация креатинина в плазме крови. В клинической практике изменение концентрации креатинина в крови позволяет судить о состоянии процесса гломерулярной фильтрации в почке.

Мочевина является у человека важнейшим конечным продуктом азотистого метаболизма. В обычных условиях потребление белка в сутки составляет около 100 г, в нем содержится до 16 г азота. Почти 90 % азота выделяется с мочой в виде мочевины, что составляет 0,43-0,71 моль мочевины в сутки.

Экскретируемая мочевина необходима для процесса осмотического концентрирования мочи. В почечных клубочках мочевина свободно фильтруется и поступает в просвет канальца в той же концентрации, что и в воде плазмы крови (15-38,5 мг*100 мл-1, или 2,5-6,4 ммоль*л-1). Стенка проксимального сегмента нефрона проницаема для мочевины, и к концу этого отдела реабсорбируется около половины профильтровавшейся мочевины. К началу дистального извитого канальца в жидкости просвета нефрона количество мочевины превышает поступившее с ультрафильтратом. Это означает, что в каких-то участках петли Генле из околоканальцевой жидкости она через стенку нефрона вновь поступает в его просвет. Специальными исследованиями было показано, что это не обусловлено активной секрецией мочевины, а зависит от ее движения по концентрационному градиенту из межклеточного вещества, где высоко содержание мочевины, в канальцевую жидкость с меньшей ее концентрацией. Стенка дистального канальца и начальных отделов собирательных трубок слабопроницаема для мочевины. Собирательные трубки мозгового вещества почки при водном диурезе реабсорбируют мало мочевины, но в присутствии вазопрессина проницаемость их стенки для мочевины резко возрастает, она всасывается в мозговое вещество почки, а ее экскреция уменьшается. Эти данные позволяют адекватно объяснить известный в клинике факт, что очищение от мочевины при диурезе меньше 2 мл*мин-1 низкое, но быстро возрастает и приобретает стандартное значение, если во время водного диуреза (т.е. при малой концентрации или отсутствии в крови вазопрессина) мочеотделение становится выше 2-3 мл*мин-1.

Данные об увеличении проницаемости собирательных трубок мозгового вещества почки для мочевины при воздействии вазопрессина дают возможность понять причину увеличения содержания мочевины в дистальном канальце и само явление рециркуляции мочевины. В собирательных трубках коры почки всасывание воды через канальцевую стенку, непроницаемую для мочевины, приводит к повышению ее концентрации в канальцевой жидкости. Когда под влиянием вазопрессина возрастает проницаемость стенки собирательной трубки для мочевины, она начинает всасываться по концентрационному градиенту в мозговое вещество, где увеличивается ее содержание. Из внеклеточной жидкости мочевина проникает в просвет тонкого нисходящего отдела петли Генле и, возможно, тонкого восходящего отдела петли Генле юкстамедуллярных нефронов, что приводит к появлению в дистальных канальцах больших количеств мочевины. Благодаря этому функционирует система кругооборота, рециркуляции мочевины, которая в значительной степени определяет степень осмотического концентрирования мочи и уровень экскреции мочевины почкой.

В зависимости от химической природы выделяемых азотистых веществ все живые организмы разделяются на три группы:

I . Аммонотелические организмы:

· выделяют в среду в качестве конечного продукта белкового обменааммиак (в виде иона NH 4 +) , диффундирующий через дыхательные полости, омываемые водой

· аммиак очень токсичен и его использование в качестве конечного продукта возможно только у организмов, получающих воду в неограниченном количестве (большинство водных беспозвоночных, много пресноводных и часть костистых морских рыб, личинки амфибий и проч.)

II . Уреотелические животные:

· главный конечный продукт белкового обмена - мочевина , образующаяся в печени из NH 3 (хрящевые рыбы, амфибии, млекопитающие, в том числе человек)

· мочевина менее токсична чем аммиак и требует небольшого количества воды для удаления из организма

III . Урикотелические животные:

· в качестве конечного продукта обмена аминокислот и белков выводят мочевую кислоту (практически не токсична и нерастворима в воде, не изменяет осмотических свойств среды)

· характерна для животных живущих в условиях острого дефицита влаги (птицы, ящерицы, змеи, насекомые, наземные моллюски)

Конец работы -

Эта тема принадлежит разделу:

Сущность жизни

Живая материя качественно отличается от неживой огромной сложностью и высокой структурной и функциональной упорядоченностью.. Живая и неживая материя сходны на элементарном химическом уровне т е.. Химические соединения вещества клетки..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Мутационный процесс и резерв наследственной изменчивости
· В генофонде популяций происходит непрерывный мутационный процесс под действием мутагенных факторов · Чаще мутируют рецессивные аллели (кодируют менее устойчивую к действию мутагенных фа

Частота аллелей и генотипов (генетическая структура популяции)
Генетическая структура популяции - соотношение частот аллелей (А и а) и генотипов (АА, Аа, аа)в генофонде популяции Частота аллеля

Цитоплазматическая наследственность
· Имеются данные, необъснимые с точки зрения хромосомной теории наследственности А. Вейсмана и Т. Моргана (т. е. исключительно ядерной локализации генов) · Цитоплазма участвует в ре

Плазмогены митохондрий
· Одна миотохондрия содержит 4 - 5 кольцевых молекул ДНК длинной около 15 000 пар нуклеотидов · Содержит гены: - синтеза т РНК, р РНК и белков рибосом, некоторых ферментов аэро

Плазмиды
· Плазмиды - очень короткие, автономно реплицирующиеся кольцевые фрагменты молекулы ДНК бактерий, обеспечивающие нехромосомную передачу наследственной информации

Изменчивость
Изменчивость - общее свойство всех организмов приобретать структурно - функциональные отличия от своих предков.

Мутационная изменчивость
Мутации - качественные или количественные ДНК клеток организма, приводящие к изменениям их генетического аппарата (генотипа) · Мутационная теория созд

Причины мутаций
Мутагенные факторы (мутагены) - вещества и воздействия, способные индуцировать мутационный эффект (любые факторы внешней и внутренней среды, которые м

Частота мутаций
· Частота мутирования оьтдельных генов широко варьирут и зависит от состояния организма и этапа онтогенеза (обычно растёт с возрастом) . В среднем каждый ген мутирует один раз в 40 тысяч лет

Генные мутации (точковые, истинные)
Причина - изменение химической структуры гена (нарушение последовательности нуклеотидов в ДНК: * генные вставки пары или нескольких нуклеотидов

Хромосомные мутации (хромосомные перестройки, аберрации)
Причины- вызываются значительными изменениями в структуре хромосом (перераспределении наследственного материала хромосом) · Во всех случаях возникают в результате ра

Полиплоидия
Полиплоидия - кратное увеличение числа хромосом в клетке (гаплоидный набор хромосом -n повторяется не 2 раза, а множество раз - до 10 -1

Значение полиплоидии
1. Полиплоидия у растений характеризуется увеличением размеров клеток, вегетативных и генеративных органов - листье, стеблей, цветов, плодов, корнеплодов и проч. , у

Анеуплоидия (гетероплоидия)
Анеуплоидия (гетероплоидия) - изменение числа отдельных хромосом не кратное гаплоидному набору (при этом одна или несколько хромосом из гомологичной пары норма

Соматические мутации
Соматические мутации - мутации, возникающие в соматических клетках организма · Различают генные, хромосомные и геномные соматические мутации

Закон гомологических рядов в наследственной изменчивости
· Открыт Н. И. Вавиловым на основе изучения дикой и культурной флоры пяти континентов 5.Мутационный процесс у генетически близких видов и родов протекает параллельно, в р

Комбинативная изменчивость
Комбинативная изменчивость - изменчивость, возникающая в результате закономерной перекомбинации аллелей в генотипах потомков, вследствие полового размножения

Фенотипическая изменчивость (модификационная или ненаследственная)
Модификационная изменчивость - эволюционно закреплённые приспособительные реакции организма на изменение внешней среды без изменения генотипа

Значение модификационной изменчивости
1. большинство модификаций имеет приспособительное значение и способствует адаптации организма к изменению внешней среды 2. может вызывать негативные изменения -морфозы

Статистические закономерности модификационной изменчивости
· Модификации отдельного признака или свойства, измеряемые количественно, образуют непрерывный ряд (вариационный ряд) ; его нельзя построить по неизмеряемому признаку или признаку, суще

Вариационнвя кривая распределения модификаций в вариционном ряд
V - варианты признака Р - частота встречаемости вариантов признака Мо - мода, или наиболее

Различия в проявлении мутаций и модификаций
Мутационная (генотипическая) изменчивость Модификационная (фенотипическая) изменчивость 1. Связана с изменением гено - и кариотипа

Особенности человека как объекта генетических исследований
1. Невозможен целенапрвленный подбор родительских пар и экспериментальные браки (невозможность экспериментального скрещивания) 2. Медленная смена поколений, происходящая в среднем через

Методы изучения генетики человека
Генеалогический метод · В основе метода лежит составление и анализ родословных (введён в науку в конце XIX в. Ф. Гальтоном) ; суть метода состоит в прослеживании нас

Близнецовый метод
· Метод заключается в изучении закономерностей наследования признаков у одно - и двуяйцевых близнецов (частота рождения близнецов составляет один случай на 84 новорождённых)

Цитогенетический метод
· Заключается в визуальном изучении митотических метафазных хромосом под микроскопом · Основан на методе дифференциального окрашивания хромосом (Т. Касперсон,

Метод дерматоглифики
· Основан на изучении рельефа кожи на пальцах, ладонях и подошвенных поверхностях стоп (здесь имеются эпидермальные выступы -гребни,которые образуют сложные узоры) , этот признак наследуе

Популяционно - статистический метод
· Основан на статистической (математической) обработке данных о наследовании в больших группах населения (популяциях - группах, отличающихся по национальности, вероисповеданию, расам, профес

Метод гибридизации соматических клеток
· Основан на размножении соматических клеток органов и тканей вне организма в питательных стерильных средах (клетки чаще всего получают из кожи, костного мозга, крови, эмбрионов, опухолей) и

Метод моделирования
· Теоретическую основу биологического моделирования в генетике даёт закон гомологических рядов наследственной изменчивости Н.И. Вавилова · Для моделирования определённы

Генетика и медицина (медицинская генетика)
· Изучает причины возникновения, диагностические признаки, возможности реабилитации и профилактики наследственных болезней человека (мониторинг генетических аномалий)

Хромосомные болезни
· Причиной является изменение числа (геномные мутации) или структуры хромосом (хромосомные мутации) кариотипа половых клеток родителей (аномалии могут возникать на разн

Полисомии по половым хромосомам
Трисомия - X (синдром Трипло X) ; Кариотип (47 , XXX) · Известны у женщин; частота синдрома 1: 700 (0,1 %) · Н

Наследственные болезни генных мутаций
· Причина - генные (точечные) мутации (изменение нуклеотидного состава гена - вставки, замены, выпадения, переносы одного или нескольких нуклеотидов; точное количество генов у человека неизв

Болезни, контролируемые генами, локализованными на X- илиY-хромосоме
Гемофилия - несвёртываемость крови Гипофосфатемия - потеря организмом фосфора и недостаток кальция, размягчение костей Мышечная дистрофия -нарушения структур

Генотипический уровень профилактики
1. Поиск и применение антимутагенных защитных веществ Антимутагены (протекторы) - соединения, нейтрализующие мутаген до его реакции с молекулой ДНК или снимающие её

Лечение наследственных болезней
1. Симптоматическое и патогенетическое- воздействие на симптомы болезни (генетический дефект сохраняется и передаётся потомству) n диетотер

Взаимодействие генов
Наследственность - совокупность генетических механизмов, обеспечивающих сохранение и предачу структурно-функциональной организации вида в ряду поколений от предков п

Взаимодействие аллельных генов (одной аллельной пары)
· Выделяют пять типов аллельных взаимодействий: 1. Полное доминирование 2. Неполное доминирование 3. Сверхдоминирование 4. Кодоминирова

Комплементарность
Комплементарность - явление взаимодействия нескольких неаллельных доминантных генов, приводящее к возникновению нового признака, отсутствующего у обоих родителей

Полимерия
Полимерия - взаимодействие неаллельных генов, при котором развитие одного признака происходит только под действием нескольких неаллельных доминантных генов (полиген

Плейотропия (множественное действие гена)
Плейотропия - явление влияния одного гена на развитие нескольких признаков · Причина плейотропного влияния гена в действии первичного продукта эт

Основы селекции
Селекция (лат. selektio – отбор) – наука и отрасль с.-х. производства, разрабатывающая теорию и методы создания новых и улучшения существующих сортов растений, пород животны

Одомашнивание как первый этап селекции
· Культурные растения и домашние животные произошли от диких предков; этот процесс называют одомашниванием или доместикацией · Движущая сила доместикации – иску

Центры происхождения и многообразия культурных растений (по Н. И. Вавилову)
Название центра Географическое положение Родина культурных растений

Искусственный отбор (подбор родительских пар)
· Известны два вида искусственного отбора: массовый и индивидуальный Массовый отбор –выделение, сохранение и использование для размножения организмов, обладающих

Гибридизация (скрещивание)
· Позволяет сочетать определённые наследственные признаки в одном организме, а также избавляться от нежелательных свойств · В селекции применяют различные системы скрещивания &n

Родственное скрещивание (инбридинг)
Инбридинг– скрещивание особей, имеющих близкую степень родства: брат – сестра, родители – потомство (у растений наиболее тесная форма инбридинга осуществляется при самоо

Неродственное скрещивание (аутбридинг)
· При скрещивании неродственных особей вредные рецессивные мутации, находящиеся в гомозиготном состоянии переходят в гетерозиготное и не оказывают негативного влияния на жизнеспособность организма

Гетерозис
Гетерозис (гибридная сила) – явление резкого увеличения жизнеспособности и продуктивности гибридов первого поколения при неродственном скрещивании (межпо

Индуцированный (искусственный) мутагенез
· Частота с спектр мутаций резко повышается при воздействии мутагенов (ионизирующих излучений, химических веществ, экстремальных условий внешней среды и т. д.) · Примене

Межлинейная гибридизация у растений
· Заключается в скрещивании чистых (инбредных) линий, полученных в результате длительного принудительного самоопыления перекрёстноопыляющихся растений с целью получения максим

Вегетативное размножение соматических мутаций у растений
· Метод основан на выделении и отборе полезных соматических мутаций по хозяйственным признакам у лучших старых сортов (возможен только в селекции растений)

Методы селекционно-генетической работы И. В. Мичурина
1. Систематически отдалённая гибридизация а) межвидовая: Вишня владимирская х черешня Винклера = вишня Краса севера (зимостойкость) б) межродовая

Полиплоидия
· Полиплоидия – явление кратного основному числу (n) увеличения числа хромосом в соматических клетках организма (механизм образования полиплоидов и

Клеточная инженерия
· Культивирование отдельных клеток или тканей на искусственных стерильных питательных средах, содержащих аминокислоты, гормоны, минеральные соли и другие питательные компоненты (

Хромосомная инженерия
· Метод основывается на возможности замены или добавлении новых отдельных хромосом у растений · Возможно уменьшение или увеличение числа хромосом в любой гомологичной паре – анеуплоидия

Селекция животных
· Имеет ряд особенностей по сравнению с селекцией растений, объективно затрудняющих её проведение 1. Характерно в основном только половое размножение (отсутствие вегетати

Одомашнивание
· Началось около 10 – 5 тыс. назад в эпоху неолита (ослабило действие стабилизирующего естественного отбора, что привело к увеличению наследственной изменчивости и повышению эффективности отбора

Скрещивание (гибридизация)
· Существуют два метода скрещивания: родственное (инбридинг) и неродственное (аутбридинг) · При подборе пары учитывают родословные каждого производителя (племенные книги, учи

Неродственно скрещивание (аутбридинг)
· Может быть внутрипородное и межпорордное, межвидовое или межродовое (систематически отдалённая гибридизация) · Сопровождается эффектом гетерозиса гибридов F1

Проверка племенных качеств производителей по потомству
· Существуют хозяйственные признаки, проявляющиеся только у самок (яйценоскость, молочность) · Самцы участвуют в формировани этих признаков у дочерей (необходимо проверять самцов на ц

Селекция микроорганизмов
· Микроорганизмы (прокариоты – бактерии, синезелёные водоросли; эукариоты – одноклеточные водоросли, грибы, простейшие) – широко используются в промышленности, сельском хозяйстве, медици

Этапы селекции микроорганизмов
I. Поиски природных штаммов, способных к синтезу необходимых человеку продуктов II.Выделение чистого природного штамма (происходит в процессе многократного пересеивания п

Задачи биотехноглгии
1. Получение кормового и пищевого белка из дешового природного сырья и отходов промышленности (основа решения продовольственной проблемы) 2. Получение достаточного количесства

Продукция микробиологического синтеза
q Кормовой и пищевой белок q Ферменты (широко применяются в пищевой, спиртовой, пивоваренной, винодельческой, мясной, рыбной, кожевенной, текстильной и др. пр

Этапы технологического процесса микробиологического синтеза
I этап – получение чистой культуры микроорганизмов, содержащей лишь организмы одного вида или штамма · Каждый вид хранится в отдельной пробирке и поступает на производство и

Генная (генетическая) инженерия
Генная инженерия – это область молекулярной биологии и биотехнологии, занимающаяся созданием и клонированием новых генетических структур (рекомбинантных ДНК) и организмов с заданными н

Стадии получение рекомбинантных (гибридных) молекул ДНК
1. Получение исходного генетического материала – гена, кодирующего интересующий белок(признак) · Необходимый ген может быть получен двумя способами: искусственный синтез или выд

Достижения генной инженерии
· Введение генов эукариот в бактерии используется для микробиологического синтеза биологически активных веществ, которые в природе синтезируются только клетками высших организмов · Синтез

Проблемы и перспективы генной инженерии
· Изучение молекулярных основ наследственных заболеваний и разработка новых методов их лечения, изыскание методов исправления повреждений отдельных генов · Повышение сопротивляемости орга

Хромосомная инженерия у растений
· Заключается в возможности биотехнологической замены отдельных хромосом в гаметах растений или добавления новых · В клетках каждого диплоидного организма имеются пары гомологичных хромосо

Метод культуры клеток и тканей
· Метод представляет собой выращивание отдельных клеток, кусочков тканей или органов вне организма в искусственных условиях на строго стерильных питательных средах с постоянными физико-химическими

Клониальное микроразмножение растений
· Культивирование клеток растений относительно несложно, среды просты и дёшевы, а культура клеток неприхотлива · Метод культуры клеток растений состоит в том, что отдельная клетка или т

Гибридизация соматических клеток (соматическая гибридизация) у растений
· Протопласты растительных клеток без жёстких клеточных стенок могут сливаться друг с другом, образуя гибридную клетку, обладающую признаками обоих родителей · Даёт возможность получать

Клеточная инженерия у животных
Метод гормональной суперовуляции и трансплантации эмбрионов · Выделение от лучших коров десятков яйцеклеток в год способом гормональной индуктивной полиовуляции (вызывается

Гибридизация соматических клеток у животных
· Соматические клетки содержат весь объём генетической информации · Соматические клетки для культивирования и последующей гибридизации у человека получают из кожи, ко

Получение моноклониальных антител
· В ответ на введение антигена (бактерии, вирусы, эритроциты и др.) органимизм продуцирует с помощью В – лимфоцитов специфические антитела, которые представляют собой белки, называемые имм

Экологическая биотехнология
· Очистка воды путё создания очистных сооружений, работающих с использованием биологических методов q Окисление сточных вод на биологических фильтрах q Утилизация органических и

Биоэнергетика
Биоэнергетика – направление биотехнологии, связанное с получением энергии из биомассы при помощи микроорганизмов · Одним из эффективных методов получения энергии из биом

Биоконверсия
Биоконверсия – это превращение веществ, образовавшихся в результате обмена веществ, в структурно родственные соединения под действием микроорганизмов · Целью биоконверсии я

Инженерная энзимология
Инженерная энзимология – область биотехнологии, использующая ферменты в производстве заданных веществ · Центральным методом инженерной энзимологии является иммобилиза

Биогеотехнология
Биогеотехнология – использование геохимической деятельности микроорганизмов в горнодобывающей промышленности (рудной, нефтяной, угольной) · С помощью микроо

Границы биосферы
· Определяются комплексом факторов; к общим условиям существования живых организмов относятся: 1. наличие жидкой воды 2. наличие ряда биогенных элементов (макро- и микроэлемент

Свойства живого вещества
1. Содержат огромный запас энергии, способной производить работу 2. Скорость протекания химических реакции в живом веществе в миллионы раз быстрее обычных благодаря участию ферментов

Функции живого вещества
· Выполнятся живой материей в процессе осуществления жизнедеятельности и биохимических превращений веществ в реакциях метаболизма 1. Энергетическая – трансформация и усвоение живым

Биомасса суши
· Континентальная часть биосферы – суша занимает 29% (148 млн км2) · Неоднородность суши выражается наличием широтной зональности и высотной зональностью

Биомасса почвы
· Почва – смесь разложившихся органических и выветренных минеральных веществ; минеральный состав почвы включает кремнезём (до 50%) , глинозём (до 25%) , оксид железа, магния, калия, фосфора

Биомасса Мирового океана
· Площадь Мирового океана (гидросфера Земли) занимает 72,2% всей поверхности Земли · Вода обладает особыми свойствами, важными для жизни организмов – высокую теплоёмкость и теплопроводн

Биологический (биотический, биогенный, биогеохимический цикл) круговорот веществ
Биотический круговорот веществ – непрерывное, планетарное, относительно циклическое, неравномерное во времени и пространстве закономерное распределение веществ

Биогеохимические циклы отдельных химических элементов
· Биогенные элементы циркулируют в биосфере, т. е. совершают замкнутые биогеохимичесик циклы, которые функционируют под действием биологических (жизнедеятельность) и геологичес

Круговорот азота
· Источник N2 – молекулярный, газообразный, атмосферный азот (не усваивается большинством живых организмов, т. к. химически инертен; растения способны усваивать лишь связанный с ки

Круговорот углерода
· Главный источник углерода – углекислый газ атмосферы и воды · Круговорот углерода осуществляется благодаря процессам фотосинтеза и клеточного дыхания · Круговорот начинается с ф

Круговорот воды
· Осуществляется за счёт солнечной энергии · Регулируется со стороны живых организмов: 1. поглощение и испарение растениями 2. фотолиз в процессе фотосинтеза (разложени

Круговорот серы
· Сера- биогенный элемент живой материи; содержится в белках в составе аминокислот (до 2,5%) , входит в состав витаминов, гликозидов, коферментов, имеется в растительных эфирных маслах

Поток энергии в биосфере
· Источник энергии в биосфере – непрерывное электромагнитное излучение солнца и радиоактивная энергия q 42% солнечной энергии отражается от облаков, атмосферой пыли и поверхности Земли в

Возникновение и эволюция биосферы
· Живая материя, а вместе с ней и биосфера появилась на Земле вследствие возникновения жизни в процессе химической эволюции около 3,5 млрд лет назад, приведшей к образованию органических веществ

Ноосфера
Ноосфера (букв. сфера разума) – высшая стадия развития биосферы, связанная с возникновением и и становлением в ней цивилизованного человечества, когда его разум

Признаки современной ноосферы
1. Возрастающее количество извлекаемых материалов литосферы – рост разработок месторождений полезных ископаемых (сейчас оно превышает 100млрд тонн в год) 2. Массовое потр

Влияние человека на биосферу
· Современное состояние ноосферы характеризуется всё возрастающей перспективой экологического кризиса, многие аспекты которой уже проявляются в полной мере, создавая реальную угрозу сущест

Производство энергии
q Строительство ГЭС и создание водохранилищ вызывает затопление больших территорий и переселение людей, поднятие уровня грунтовых вод, эрозию и заболачивание почвы, оползни, потерю пахотных зем

Производство пищи. Истощение и загрязнение почвы, сокращение площади плодородных почв
q Пахотные земли занимают 10% поверхности Земли (1,2 млрд. га) q Причина – чрезмерная эксплуатация, несовершенство с\х производства: водная и ветровая эрозия и образование оврагов, в

Сокращение природного биологического разнообразия
q Хозяйственная деятельность человека в природе сопровождается изменением численности видов животных и растений, вымиранию целых таксонов, снижению разнообразия живого q В настоящее врем

Кислотные осадки
q Увеличение кислотности дождей, снега, туманов вследствие выброса в атмосферу окислов серы и азота от горения топлива q Кислые осадки снижают урожай, губят естественную растительность

Пути решения экологических проблем
· Человек в дальнейшем будет эксплуатировать ресурсы биосферы во всё более возрастающих масштабах, поскольку эта эксплуатация – непременное и главное условие самого существования ч

Рациональное потребление и управление природными ресурсами
q Максимально полное и комплексное извлечение из месторождений всех полезных ископаемых (из-за несовершенства технологии добычи из месторождений нефти извлекается лишь 30-50% запасов q Рек

Экологическая стратегия развития сельского хозяйства
q Стратегическое направление - повышение урожайности для обеспечения продовольствием растущего населения без увеличения посевных площадей q Повышение урожайности с\х культур без негативны

Свойства живой материи
1. Единство элементарного химического состава (98% приходится на углерод, водород, кислород и азот) 2. Единство биохимического состава – все живые органи

Гипотезы происхождения жизни на Земле
· Существую две альтернативные концепции о возможности происхождения жизни на Земле: q абиогенез – возникновение живых организмов из веществ неорганической природы

Стадии развития Земли (химические предпосылки возникновения жизни)
1. Звездная стадия истории Земли q Геологическая история Земли началась более 6 морд. лет назад, когда Земля представляла собой раскалённый свыше 1000

Возникновение процесса самовоспроизведения молекул (биогенного матричного синтеза биополимеров)
1. Произошло вследствие взаимодействия коацерватов с нуклеиновыми кислотами 2. Все необходимые компоненты процесса биогенного матричного синтеза: - ферменты - белки - пр

Предпосылки возникновения эволюционной теории Ч. Дарвина
Социально-экономические предпосылки 1. В первой половине XIX в. Англия стала одной из самых развитых в хозяйственном отношении стран мира с высоким уровне


· Изложены в книге Ч. Дарвина « О происхождение видов путём естественного отбора или сохранение благоприятствуемых пород в борьбе за жизнь » , которая вышла

Изменчивость
Обоснование изменяемости видов · Для обоснования положения об изменчивости живых существ Ч. Дарвин воспользовался распространёнными

Коррелятивная (соотносительная) изменчивость
· Изменение структуры или функции одной части организма обуславливает согласованное изменение другой или других, поскольку организм - целостная система, отдельные части которой тесно связаны межд

Основные положения эволюционного учения Ч. Дарвина
1. Все виды живых существ, населяющих Землю, никогда и никем не были созданы, а возникли естественным путём 2. Возникнув естественным путём, виды медленно и постепенно

Развитие представлений о виде
· Аристотель- пользовался понятием вида при описании животных, которое не имело научного содержания и использовалось как логическое понятие · Д. Рэй

Критерии вида (признаки идентификации видовой принадлежности)
· Значение критериев вида в науке и практике – определение видовой принадлежности особей (видовая идентификация) I. Морфологический – сходство морфологических наследс

Виды популяций
1. Панмиктические - состоят из особей, размножающихся половым путём, перекрёстно оплодотворяющихся. 2. Клониальные- из особей, размножающихся только бе

Мутационный процесс
· Спонтанные изменения наследственного материала половых клеток в виде генных, хромосомных и геномных мутаций происходят постоянно на протяжении всего периода существования жизни под действием мут

Изоляция
Изоляция - прекращение потока генов из популяции в популяцию (ограничение обмена генетической информацией между популяциями) · Значение изоляции как фа

Первичная изоляция
· Не связана прямо с действием естественного отбора, является следствием внешних факторов · Приводит к резкому снижению или прекращению миграции особей из других попул

Экологическая изоляция
· Возникает на основе экологических отличий существования разных популяций (разные популяции занимают различные экологические ниши) v Например, форели озера Севан р

Вторичная изоляция (биологическая, репродуктивная)
· Имеет решающее значение в формировании репродуктивной изоляции · Возникает вследствие внутривидовых различий организмов · Возникла в результате эволюции · Имеет два изо

Миграции
Миграции - перемещение особей (семян, пыльцы, спор) и свойственных им аллелей между популяциями, ведущее к изменению частот аллелей и генотипов в их генофондах · Общее с

Популяционные волны
Популяционные волны (« волны жизни ») - периодические и непериодические резкие колебания численности особей популяции под действием естественных причин (С. С.

Значение популяционных волн
1. Приводит к ненаправленному и резкому изменению частот аллелей и генотипов в генофонде популяций (случайное выживание особей в период зимовки может увеличить концентрацию данной мутации в 1000 р

Дрейф генов (генетико-автоматические процессы)
Дрейф генов (генетико-автоматические процессы) - случайное ненаправленное, не обусловленное действием естественного отбора, изменение частот аллелей и генотипов в м

Результат дрейфа генов (для малых популяций)
1. Обуславливает утрату (р =0) или фиксацию (р=1) аллелей в гомозоготном состоянии у всех членов популяции вне связи с их адаптивной ценностью - гомозиготизация особей

Естественный отбор - направляющий фактор эволюции
Естественный отбор – процесс преимущественного (селективного, выборочного) выживания и размножения наиболее приспособленных особей и не выживания или не размножения

Борьба за существование Формы естественного отбора
Движущий отбор (Описан Ч. Дарвином, современное учение развито Д. Симпсоном, англ.) Движущий отбор - отбор в

Стабилизирующий отбор
· Теорию стабилизирующего отбора разработал русский акад. И. И. Шмаьгаузен (1946) Стабилизирующиё отбор - отбор, действующий в стабильных

Другие формы естественного отбора
Индивидуальный отбор -избирательное выживание и размножение отдельных особей, обладающих преимуществом в борьбе за существование и элиминация других

Основные особенности естественного и искусственного отбора
Естественный отбор Искусственный отбор 1. Возник с возникновением жизни на Земле (около 3млрд лет назад) 1. Возник в не

Общие признаки естественного и искусственного отбора
1. Исходный (элементарный) материал - индивидуальные признаки организма (наследственные изменения - мутации) 2. Осуществляются по фенотипу 3. Элементарная структура - популяци

Борьба за существование - важнейший фактор эволюции
Борьба за существование - комплекс взаимоотношений организма с абиотическими (физические условия жизни) и биотическими (отношения с другими живыми организмами) фак

Интенсивность размножения
v Одна особь аскариды производит в сутки 200 тыс. яиц; серая крыса даёт 5 помётов в год по 8 крысят, которые становятся половозрелыми в трёхмесячном возрасте; потомство одной дафнии за лето дост

Межвидовая борьба за существование
· Происходит между особями популяций разных видов · Менее острая, чем внутривидовая, но её напряжённость увеличивается, если разные виды занимают сходные экологические ниши и обладают с

Борьба с неблагоприятными абиотическими факторами окружающей среды
· Наблюдается во всех случаях, когда особи популяции оказываются в экстремальных физических условиях (излишнее тепло, засуха, суровая зима, избыточная влажность, неплодородные почвы, суровые

Основные открытия в области биологии после создания СТЭ
1. Открытие иерархических структур ДНК и белка, в том числе вторичной структуры ДНК - двойной спирали и её нуклеопротеидной природы 2. Расшифровка генетического кода (его триплетнос

Признаки органов эндокринной системы
1. Обладают относительно небольшими размерами (доли или несколько грамм) 2. Анатомически не связаны между собой 3. Синтезируют гормоны 4. Имеют обильную сеть кровеносны

Характеристика (признаки) гормонов
1. Образуются в железах внутренней секреции (нейрогормоны могут синтезироваться в нейросекреторных клетках) 2. Высокая биологическая активность – способность быстро и сильно изменять инт

Химическая природа гормонов
1. Пептиды и простые белки (инсулин, соматотропин, тропные гормоны аденогипофиза, кальцитонин, глюкагон, вазопрессин, окситоцин, гормоны гипоталамуса) 2. Сложные белки – тиреотропин, лют

Гормоны средней (промежуточной) доли
Меланотропный гормон(меланотропин) – обмен пигментов (меланина) в покровных тканях Гормоны задней доли (нейрогипофиза) – окситрцин, вазопрессин

Гормоны щитовидной железы (тироксин, трийодтиронин)
В состав гормонов щитовидной железы непременно входит йод и амнокислота тирозин (ежедневно в составе гормонов выделяется 0,3 мг. йода, следовательно человек должен ежедневно с пищей и водой получа

Гипофункция щитовидной железы (гипотериоз)
Причиной гипотерозов является хронический дефицит йода в пище и воде Недостаток секреции гормонов компенсируется за счёт разрастания ткани железы и значительное увеличение её объёма

Гормоны коркового слоя (минералкортикоиды, глюкокортикоиды, половые гормоны)
Корковый слой образован из эпителиальной ткани и состоит из трёх зон: клубочковой, пучковой и сетчатой, имеющих разную морфологию и функции. Гормоны относится к стероидам – кортикостероиды

Гормоны мозгового слоя надпочечников (адреналин, норадреналин)
- Мозговой слой состоит из особых хромаффинных клеток, окрашивающихся в жёлтый цвет, (эти же клетки расположены в аорте, месте разветвления сонной артерии и в симпатических узлах; все они составл

Гормоны поджелудочной железы (инсулин, глюкагон, соматостатин)
Инсулин (секретируется бета-клетками(инсулоцитами), является простейшим белком) Функции: 1. Регуляция углеводного обмена (единственный сахаропониж

Тестостерон
Функции: 1. Развитие вторичных половых признаков (пропорции тела, мускулатура, рост бороды, волос на теле, психические особенности мужчины и др.) 2. Рост и развитие органов размножения

Яичники
1. Парные органы (размеры около 4 см. , масса 6-8 гр.), расположенные в малом тазу, по обеим сторонам матки 2. Состоят из большого числа (300 -400 тыс.) т. н. фолликулов – структу

Эстрадиол
Функции: 1. Развитие женских половых органов: яйцеводов, матки, влагалища, молочных желёз 2.Формирование вторичных половых признаков женского пола (телосложение, фигура, отложение жира, в

Железы внутренней секреции (эндокринная система) и их гормоны
Эндокринные железы Гормоны Функции Гипофиз: - передняя доля: аденогипофиз - средняя доля - задня

Рефлекс. Рефлекторная дуга
Рефлекс – ответная реакция организма на раздражение (изменение) внешней и внутренней среды, осуществляющуюся с участием нервной системы (основная форма деятельнос

Механизм обратной связи
· Рефлекторная дуга не заканчивается ответной реакцие организма на раздражение (работой эффектора). Все ткани и органы имеют собственные рецепторы и афферентные нервные пути, подходящие к чувствите

Спинной мозг
1. Наиболее древний отдел ЦНС позвоночных (впервые появляется у головохордовых – ланцетника) 2. В процессе эмбриогенеза развивается из нервной трубки 3. Располагается в костном

Скелетно-моторные рефлексы
1. Коленный рефлекс (центр локализуется в поясничном сегменте); рудиментарный рефлекс от животных предков 2. Ахиллов рефлекс (в поясничном сегменте) 3. Подошвенный рефлекс (с

Проводниковая функция
· Спинной мозг имеет двустороннюю связь с головным мозгом (стволовой частью и корой полушарий); через спинной мозг головной мозг связан с рецепторами и исполнительными органами тела · Св

Головной мозг
· Головной и спинной мозг развиваются у эмбриона из наружного зародышевого листка - эктодермы · Располагается в полости мозгового черепа · Покрыт (как и спинной мозг) тремя обол

Продолговатый мозг
2. В процессе эмбриогенеза развивается из пятого мозгового пузыря нервной трубки зародыша 3. Является продолжением спинного мозга (нижней границей между ними является место выхода корешко

Рефлекторная функция
1. Защитные рефлексы: кашель, чихание, мигание, рвота, слёзоотделение 2. Пищевые рефлексы: сосание, глотание, сокоотделение пищеварительных желёз, моторика и перистальтика

Средний мозг
1. В процессе эмбриогенеза из третьего мозгового пузыря нервной трубки зародыша 2. Покрыт белым веществом, серое вещество – внутри в виде ядер 3. Имеет следующие структурные компо

Функции среднего мозга (рефлекторная и проводниковая)
I. Рефлекторная функция(все рефлексы врождённые, безусловные) 1. Регуляция мышечного тонуса при движении, ходьбе, стоянии 2. Ориентировочный рефлекс

Таламус (зрительные бугры)
· Представляет собой парные скопления серого вещества (40 пар ядер), покрытые слоем белого вещества, внутри – III желудочек и ретикулярная формация · Все ядра таламуса афферентные, чувств

Функции гипоталамуса
1. Высший центр нервной регуляции сердечно-сосудистой системы, проницаемость кровеносных сосудов 2. Центр терморегуляции 3. Регуляция водно-солевого баланса орган

Функции мозжечка
· Мозжечёк соединён со всеми отделами ЦНС; рецепторами кожи, проприорецептрами вестибулярного и двигательного аппарата, подкоркой и корой больших полушарий · Функции мозжечка исследуют пут

Конечный мозг (большой мозг, большие полушария переднего мозга)
1. В процессе эмбриогенеза развивается из первого мозгового пузыря нервной трубки зародыша 2. Состоит из двух полушарий (правого и левого), разделённых глубокой продольной щелью и соединён

Кора больших полушарий (плащ)
1. У млекопитающих и человека поверхность коры складчатая, покрытая извилинами и бороздами, обеспечивающими увеличение площади поверхности (у человека составляет около 2200 см2

Функции коры больших полушарий
Методы изучения: 1. Электрическое раздражение отдельных участков (метод «вживления» электродов в зоны мозга) 3. 2. Удаление (экстирпация) отдельных участк

Сенсорные зоны(области) коры больших полушарий
· Представляют из себя центральные (корковые) отделы анализаторов, к ним подходят чувствительные (афферентные) импульсы от соответствующих рецепторов · Занимают небольшую часть кор

Функции ассоциативных зон
1. Связь между различными зонами коры (сенсорными и моторными) 2. Объединение (интеграция) всей чувствительной информации, поступающей в кору с памятью и эмоциями 3. Решающее з

Особенности вегетативной нервной системы
1. Разделяется на два отдела: симпатический и парасимпатический (каждый из них имеет центральную и переферическую части) 2. Не имеет собственных афферентных (

Особенности отделов вегетативной нервной системы
Симпатический отдел Парасимпатический отдел 1. Центральные ганглии расположены в боковых рогах грудных и поясничных сегментов спинн

Функции вегетативной нервной системы
· Большинство органов тела иннервирует как симпатическая, так и парасимпатическая системы (двойная иннервация) · Оба отдела оказывают на органы три рода действий – сосудодвигательное,

Влияние симпатического и парасимпатического отдела вегетативной нервной системы
Симпатический отдел Парасимпатический отдел 1. Учащает ритм, увеличивает силу сердечных сокращений 2. Расширяет коронарные сосуды се

Высшая нервная деятельность человека
Психические механизмы отражения: Психические механизмы проектирования будущего - ощуще

Особенности (признаки) безусловных и условных рефлексов
Безусловные рефлексы Условные рефлексы 1. Врожденные видовые реакции организма (передаются по наследству) – генетически детерм

Методика выработки (образования) условных рефлексов
· Разработана И. П. Павловым на собаках при изучении слюноотделения при действии световых или звуковых раздражений, запахов, прикосновений и т. д. (проток слюнной железы выводился наружу через разр

Условия выработки условных рефлексов
1. Индифферентный раздражитель должен предшествовать безусловному (опережающее действие) 2. Средняя сила индифферентного раздражителя (при малой и большой силе рефлекс может не образовать

Значение условных рефлексов
1. Лежат в основе обучения, получения физических и психических навыков 2. Тонкое приспособление вегетативных, соматических и психических реакций к условиям с

Индукционное (внешнее) торможение
o Развивается при действии постороннего, неожиданного, сильного раздражителя из внешней или внутренней среды v Сильный голод, переполненный мочевой пузырь, боль или половое возбуждение тор

Угасательное условное торможение
· Развивается при систематическом неподкреплении условного раздражителя безусловным v Если условный раздражитель повторять через короткие промежутки времени без подкреплениея его бе

Взаимоотношене возбуждения и торможения в коре больших полушарий
Иррадиация - распространение процессов возбуждения или торможения из очага их возникновения на другие области коры · Примером иррадиации процесса возбуж

Причины возникновения сна
· Существуют несколько гипотез и теорий причин возникновения сна: Химическая гипотеза – причиной сна является отравления клеток мозга токсичными продуктами жизнедеятельности, образ

Быстрый (парадоксальный) сон
· Наступает после периода медленного сна и продолжается 10 -15 мин; затем опять сменяется медленным сном; повторяется в течение ночи 4-5 раз · Характеризуется быстрыми

Особенности высшей нервной деятельности человека
(отличия от ВНД животных) · Каналы получения информации о факторах внешней и внутренней среды называются сигнальными системами · Выделяют первую и вторую сигнальные систем

Особенности высшей нервная деятельность человека и животных
Животное Человек 1. Получение информации о факторах среды только с помощью первой сигнальной системы (анализаторов) 2. Конкретное

Память, как компонент высшей нервной деятельности
Память – совокупность психических прцессов, обеспечивающих сохранение, закрепление и воспроизведение предыдущего индивидуального опыта v Основные прцессы памяти

Анализаторы
· Всю информацию о внешней и внутренней среде организма, необходимую для взаимодействие с ней человек получает с помощью органов чувств (сенсорных систем, анализаторов) v Понятие об анали

Строение и функции анализаторов
· Каждый анализатор состоит из трёх анатомически и функционально связанных отделов: переферического, проводникового и центрального · Повреждение одной из частей анализатора

Значение анализаторов
1. Информация организму о состоянии и изменении внешней и внутренней среды 2. Возникновение ощущений и формирование на их основе понятий и представлений об окружающем мире,т. е.

Сосудистая оболочка (средняя)
· Находится под склерой, богата кровеносными сосудами, состоит из трёх частей: переднюю – радужку, среднюю – ресничное тело и заднюю – собственно сосудистую

Особенности фоторецепторных клеток сетчатки
Палочки Колбочки 1. Количество 130 млн. 2. Зрительный пигмент– родопсин(зрительный пурпур) 3. Максимальное количество на п

Хрусталик
· Расположен позади зрачка, имеет форму двояковыпуклой линзы диаметром около 9 мм, абсолютно прозрачен и эластичен. Покрыт прозрачной капсулой, к которой прикрепляются цинновы связки ресничного тел

Функционирование глаза
· Зрительная рецепция начинается с фотохимических реакций, начинающихся в палочках и колбочках сетчатки и заключающихся в распаде зрительных пигментов под действием квантов света. Именно это

Гигиена зрения
1. Профилактика травм (защитные очки на производстве с травмирующими объектами – пыль, химические вещества, стружки, осколки и т.д.) 2. Защита глаз от слишком яркого света – солнце, эле

Наружное ухо
· Представлении ушной раковиной и наружным слуховым проходом · Ушная раковина – свободно выступающая на поверхности головы

Среднее ухо (барабанная полость)
· Лежит внутри пирамиды височной кости · Заполнено воздухом и сообщается с носоглоткой через трубку, длиной 3,5 см. и диаметром 2 мм – евстахиеву трубу Функция евстахиев

Внутреннее ухо
· Расплагается в пирамиде височной кости · Включает костный лабиринт, представляющий собой сложно устроенные каналы · Внутри костног

Восприятие звуковых колебаний
· Ушная раковина улавливает звуки и направляет их в наружный слуховой проход. Звуковые волны вызывают колебания барабанной перепонки, которые от неё предаются по системе рычагов слуховых косточек (

Гигиена слуха
1. Профилактика травм органов слуха 2. Защита органов слуха от чрезмерной силы или продолжительности звуковых раздражений – т. н. «шумового загрязнения», особенно в условиях шумного произв

Биосферный
1. Представлен клеточными органоидами 2. Биологические мезосистемы 3. Возможны мутации 4. Гистологический метод исследования 5. Начало метаболизма 6. Об


« Строение эукариотической клетки » 9. Органоид клетки, содержащие ДНК 10. Имеет поры 11. Выполняет в клетке компартаментальную функцию 12. Функ

Клеточный центр
Проверочный тематический цифровой диктант по теме « Метаболизм клетки » 1. Осуществляется в цитоплазме клетки 2. Требует специфических фермен

Тематический цифровой программированный диктант
по теме « Энергетический обмен » 1. Осуществляются реакции гидролиза 2. Конечные продукты – СО2 и Н2 О 3. Конечный продукт – ПВК 4. НАД восстана

Кислородный этап
Тематический цифровой программированный диктант по теме « Фотосинтез » 1. Осуществляется фотолиз воды 2. Происходит восстановление


« Метаболизм клетки:Энергетический обмен. Фотосинтез. Биосинтез белка» 1. Осуществляется у автотрофов 52. Осуществляется транскрипция 2. Связан с функционировани

Основные признаки царств эукариот
Царство Растений Царство Животных 1. Имеют три подцарства: – низшие растения (настоящие водоросли) – красные водоросли

Особенности видов искусственного отбора в селекции
Массовый отбор Индивидуальный отбор 1. К размножению допускаются множество особей с наиболее выраженными хозя

Общие признаки массового и индивидуального отбора
1. Осуществляется человеком при искусственном отборе 2. К дальнейшему размножению допускаются толко особи с наиболее выраженным желаемым признаком 3. Может быть многократным

Белок является одним из основных и жизненно необходимых пищевых ингредиентов. Он используется организмов прежде всего для пластических целей, что делает его особенно важным, совершенно незаменимым для растущего организма.

Для правильного развития ребенка необходимо регулярное и достаточное введение полноценных белков. Белки пищи частично используются организмом ребенка и для энергетических целей.

Всасывание аминокислот, а может быть и более сложных соединений - полипептидов, образующихся, как указывалось выше, под влиянием воздействия на белки пищи целого ряда протеаз пищеварительного тракта, происходит весьма совершенно и почти не зависит от возраста ребенка и способа его вскармливания.

Количество всосавшегося в кишечник азота не поддается точному учету, но практически можно считать, что количество азота в стуле является мерилом неиспользованных организмом белков пищи.

У грудных детей, вскармливаемых женским молоком, в кишечнике всасывается в среднем около 80-90% всего введенного азота. При смешанном и искусственном вскармливании процент азота, резорбируемого организмом, несколько меньше. Количество используемого азота до известной степени зависит от характера белка, его количества и сочетания с одновременно вводимыми другими ингредиентами пищи.

После приема белковой пищи количество общего остаточного и аминного азота крови нарастает, достигает у грудных детей максимума через 3-4 часа после кормления и через 5 часов снова снижается к первоначальному уровню. У новорожденных максимум пищевой гиперазотемии наступает раньше. Дальнейшая судьба всасывающихся в кишечнике аминокислот изучена мало. Аминокислоты с током крови достигают отдельных клеток организма, где и используются для построения белковых молекул тканей. Частично аминокислоты подвергаются дезаминированию; часть адсорбируется эритроцитами. Часть белков, всосавшихся в кишечнике в виде аминокислот, снова выделяется в желудок и снова подвергается расщеплению и всасыванию.

Существенное значение для оценки особенностей азотистого обмена у детей представляет задержка азота организмом. По прежним наблюдениям, процент использования азота пищи колеблется в зависимости от возраста ребенка и способа вскармливания, тогда как количество ретенированного азота зависит от возраста и почти не зависит от размеров белковой нагрузки. Однако новейшие наблюдения показывают, что как использование, так и задержка азота пищи зависят не только от возрастных потребностей организма, но и от количества введенного с пищей белка. Улучшение задержки под влиянием повышения нагрузки белками имеет, однако, известные пределы; после дачи детям более 5-6 г белка на 1 кг веса дальнейшее увеличение задержки азота приостанавливается.

Грудной ребенок с его интенсивно текущими пластическими процессами задерживает белков относительно вдвое больше, чем взрослый. Несомненно, что между энергией роста и степенью усвоения белков существует известный параллелизм, но ошибочно думать, что всякой повышенной задержке азота соответствует улучшение процессов роста и наоборот.

Большая часть избыточно введенных белков вступает в энергетический обмен и ведет к чрезмерному теплообразованию; меньшая часть временно может вести к гиперпротеинемии. Деэаминированный остаток белков, введенных с пищей в избыточном количестве, ведет к отложению жира и углеводов.

У взрослого, как правило, имеется азотистое равновесие, у детей - положительный азотистый баланс.

Под азотистым равновесием понимают такое состояние белкового метаболизма, когда количества азота, поступающего в организм с пищей, и азота, выделяющегося с мочой и стулом, равны между собой. При положительном балансе количество вводимого азота больше общего количества выводимых азотистых начал.

У детей первых дней периода новорожденности, по-видимому, может быть временно отрицательный азотистый баланс. При искусственном вскармливании отрицательное азотистое равновесие у новорожденных может сменяться положительным балансом несколько позже. Относительная величина положительного баланса азота достигает максимума в первом квартале 1-го года жизни.

За счет белков пищи должно покрываться приблизительно 10-15% общего суточного количества калорий. Дети, получающие только грудное молоко, должны получать 1,2-2 г белка в день на 1 кг веса, дети этого же возраста, находящиеся на искусственном питании, нуждаются в 3-4 г белка на единицу веса. В более старшем возрасте суточная потребность в белках равна 3,0-3,5 г на 1 кг веса.

Дети долгое время могут достаточно хорошо развиваться на гораздо меньших белковых нагрузках, что, однако, надо признать нецелесообразным.

Ребенок нуждается не в минимальном, а в оптимальном для него количестве белка, что только и может обеспечить ему вполне правильное течение процессов межуточного обмена, а следовательно, и роста.

При недостатке белков нарушается переваривание углеводов. Не должно быть, конечно, и избытка белков, что легко ведет у детей к сдвигу щелочно-кислотного равновесия в сторону ацидоза, столь небезразличного для ребенка.

Вопрос об оптимальном для ребенка белковом рационе не может ограничиваться лишь одной количественной стороной. Гораздо большее значение имеет качество вводимых белков, наличие в них аминокислот, необходимых для построения белковой молекулы тканей детского тела. К таким жизненно необходимым аминокислотам относятся триптофан, лизин, валин, лейцин, изолейцин, аргинин, метионин, треанин, фенилаланин, гистидин.

Правильный белковый обмен возможен лишь при надлежащей корреляции между белками и другими основными пищевыми ингредиентами. Введение углеводов значительно улучшает задержку белков, тогда как жиры несколько ухудшают их использование. Достаточное введение воды и солей - необходимое условие для правильного течения метаболизма белков.

Конечные продукты азотистого обмена выделяются главным образом с мочой; количественные взаимоотношения между главнейшими азотистыми компонентами мочи (мочевиной, аммиаком, мочевой кислотой, креатинином, креатином, аминокислотами и т. д.) обнаруживают определенные возрастные особенности, что зависит от своеобразия эндогенного и экзогенного обмена белков у детей.

Для новорожденных характерно большое количество выделяемого с мочой азота, достигающее в первые дни жизни 6-7% по отношению к суточному количеству мочи. С возрастом процентное содержание азота в моче уменьшается, но общее суточное количество азота, особенно в течение первых 4 лет жизни, интенсивно увеличивается; количество азота на I кг веса достигает максимальной величины к 6 годам, а затем начинает постепенно снижаться.

У грудных детей за счет мочевины выделяется азота относительно несколько меньше, а за счет аммиака и мочевой кислоты относительно значительно больше, чем у взрослого.

Большая часть азота, поступающего в организм в качестве белков пищи, выделяется с мочой в виде мочевины. У новорожденных в первые дни жизни количество мочевины достигает приблизительно 85% общего азота мочи. С 4-5-го дня жизни количество мочевины снижается до 60%. а с 2 месяцев начинает снова нарастать.

У грудных детей за счет мочевины выделяется азота на 8- 10%. а У более старших детей на 3-5%, меньше, чем у взрослых. Количество мочевины зависит от характера и количества получаемых ребенком белков. Меньшее количество мочевины надо считать явлением компенсаторным, так как ребенок нуждается в относительно больших количествах аммиака.

Однако этот вопрос не может считаться окончательно решенным; в настоящее время допускается, что фермент аргиназа действует на аминокислоту аргинин и расщепляет ее на мочевину и орнитин; орнитин соединяется с аммиаком и превращает его в аргинин и т. д. Этот путь образования мочевины еще нельзя считать достаточно изученным.

Мочевой кислоты особенно много в моче новорожденных; максимум выделения ее приходится на 3-4-й день жизни. Обильное выделение мочевой кислоты, кислая реакция и малое количество мочи являются причиной возникновения у новорожденных так называемого мочекислого инфаркта - отложения в собирательных трубочках и в ductus papillares почек солей мочевой кислоты, мочекислых аммония и натрия и щавелевокислой извести. С постепенным увеличением количества мочи мочевая кислота вымывается. Эта так называемая инфарктная моча мутна, высокого удельного веса, дает обильный красноватый осадок свободных уратов и аморфных мочекислых солей. Инфарктная моча наблюдается у 85-100% здоровых новорожденных.

Мочевая кислота и пуриновые основания мочи у грудных детей - эндогенного происхождения; происходят они главным образом из нуклеопротеидов пищеварительных соков и из слущившихся клеток кишечного эпителия.

У старших детей выделяемая с мочой мочевая кислота - экзогенно-эндогенного происхождения; количество ее в значительной мере определяется характером пищи.

Суточное количество мочевой кислоты, выделяемое с мочой, с возрастом увеличивается; количество мочевой кислоты, рассчитанное на 1 кг веса (относительное выделение), наоборот, с возрастом падает, уменьшается также и процентное отношение мочевой кислоты мочи к общему азоту мочи.

Нарастание с возрастом образования мочевины и относительное уменьшение мочевой кислоты говорят 66 уменьшении интенсивности процессов роста и о большем совершенстве обмена веществ.

Аммиак выделяется в моче в виде солей серной и фосфорной кислот. За счет аммиака у детей выделяется относительно больше азота, чем у взрослых.

Избыток аммиака в детской моче зависит от неполного превращения его в мочевину. Аммиак входит в состав солей серной и фосфорной кислот, образующихся при расщеплении белка и фосфорсодержащих органических соединений. У взрослого это осуществляется отчасти за счет щелочных земель (Na, К, Са, Mg), поступающих в достаточном количестве с пищей. Детский организм эти соли использует для пластических целей; кроме того, всасывание их в кишечнике несколько затруднено образованием мыл вследствие относительно большого содержания жира в пище ребенка.

Повышенное содержание аммиака в моче не говорит об ацидозе и ацидурии, а скорее об алкалопении, указывая на некоторый недостаток щелочей. У старших детей количество аммиака в моче зависит от характера пищи, главным образом от характера ее зольного остатка; при большом количестве овощей поступает много щелочей и, следовательно, меньше выделяется аммиака с мочой; при мясной пище, наоборот, больше образуется кислых продуктов межуточного обмена, нейтрализуемых аммиаком и выделяющихся с мочой в виде соответствующих соединений.

Аминокислоты у грудных детей выделяются с мочой в значительно большем количестве, чем у взрослых; в моче недоношенных детей их особенно много.

Креатинин происходит из креатина, образующегося в мышцах, и потому на него следует смотреть как на особый продукт мышечного обмена. Сравнительно слабым развитием у детей мышечной системы и значительно меньшим содержанием в их мышцах креатина, по-видимому, и объясняется малое содержание креатинина в моче детей.- Между количеством креатинина в моче и массой тела (вернее, количеством мышц) имеется известная пропорциональность.

В отличие от мочи взрослых, в моче детей имеется креатин. У мальчиков он обнаруживается до 6 лет, у девочек - значительно дольше, до периода полового созревания. Причины креатинурии у детей окончательно не выяснены. Надо полагать, что сказывается своеобразие углеводного (Толкачевская) и интенсивность водного обмена, ведущих к вымыванию креатина, но не исключено влияние и некоторого несовершенства обмена, вследствие чего креатин не превращается в креатинин.

Речь пойдет об особенностях метаболизма пуриновых оснований. Большинству людей это ни о чем не говорит. Но если вам знакомы слова «подагра», мочекаменная болезнь, инсулинорезистентность, сахарный диабет 2 типа, то знать суть о метаболизме пуринов необходимо. Казалось бы: а хирургия то здесь причем? А притом, что многие специалисты при болях в суставах и высокой мочевой кислоте ставят диагноз «подагра». На самом деле — все намного сложнее. К примеру подагрический артрит может быть при нормальных цифрах мочевой кислоты, и наоборот: высокая мочевая кислота может быть в ряде случаев у здорового человека.

Организм человека в основном состоит из четырех химических элементов, на долю которых приходится 89 % состава: С-углерод (50%), О-кислород(20%), Н-водород(10%) и N-азот (8,5%). Далее идет ряд макроэлементов: кальций, фосфор, калий, сера, натрий, хлор и др. Затем микроэлементы, количество которых очень мало, но они жизненно необходимы: марганец, железо, йод и пр.
Интересен нам будет четвертый в этом количественном списке — азот.

Живой организм — это динамическая система. По простому: вещества в него постоянно поступают (становясь частью организма) и выводятся из него. Основной источник азота для организма — белки. Поступающий с пищей белок в желудочно-кишечном тракте распадается до аминокислот, которые уже и включаются в обмен. Ну а каким образом азотсодержащие вещества выводятся из организма?

В процессе эволюции у животных выработались определенные особенности азотистого обмена.
Причем ключевым в определении этих особенностей будут: условия существования и доступ к воде.

Животных разделяют на три группы, имеющие различия в метаболизме азота:

Аммонио-литические . Конечный продукт азотистого обмена — аммиак, NH3. Сюда относят большую часть водных беспозвоночных и рыб.
Все дело в том, что аммиак — токсичное вещество. И для его выведения нужно очень-очень много жидкости. Благо — он хорошо растворим в воде. С выходом на сушу в ходе эволюции возникла потребность в изменении метаболизма. Так появились:

Уреолитические . У этих животных появился так называемый «цикл мочевины». Аммиак связывается с СО2(углекислый газ). Образуется конечный продукт — мочевина. Мочевина не такое токсичное вещество и для ее выведения требуется заметно меньше жидкости. Кстати мы с вами относимся именно к этой группе. Мочевая кислота в процессе метаболизма в значительно меньших количествах также образуется, но распадается до малотоксичного и хорошо растворимого аллантоина. Но… Кроме человека и человекообразных обезьян. Это очень важно и к этому вернемся.

Урикотелические . Предкам земноводных с уреолитическим обменом пришлось приспосабливаться к засушливым регионам. Это пресмыкающиеся и прямые предки динозавров — птицы. У них конечным продуктом является мочевая кислота. Она очень плохо растворяется в воде и для ее выведения из организма как раз воды много и не требуется. В помете у тех же птиц количество мочевой кислоты очень большое, фактически выводится в полутвердом виде Поэтому птичий помет («гуано») — основная причина коррозии и разрушения металлоконструкций мостов. Лакокрасочное покрытие автомобиля тоже портит — будьте внимательны, мойте сразу.
Это классическая гексагональная долька печени. В общем так печень выглядит под микроскопом. Похожа на Москву-сити, только вместо кремля — центральная вена. А интересовать нас будут «домики», плотно прилежащие друг к другу. Это гепатоциты — ключевые клетки печени.
Славянское слово печень произошло от слова «печь». Действительно, температура органа на градус выше температуры тела. Причина в этом — очень активный обмен веществ в гепатоцитах. Клетки действительно уникальные, в них протекает около 2 тысяч химических реакций.
Печень — это основной орган, который продуцирует мочевую кислоту. 95% выводимого азота — синтез мочевой кислоты как конечный продукт химических реакций в печени . И только 5% — окисление пуриновых оснований, поступающих извне с пищей. Поэтому коррекция питания при гиперурикемии не является ключевым в лечении.

Схема обмена мочевой кислоты

Откуда берутся пурины?
1. Пурины, которые поступают с пищей . Как уже отмечалось — это небольшое количество — около 5%. Те пурины, которые содержаться в пище (больше всего, разумеется в печени и почках, красном мясе).
2. Синтез пуриновых оснований самим организмом . Большая часть синтезируется в гепатоцитах печени. Очень важный пункт, к нему вернемся. А также причем здесь рекомендуемая диабетиками и не требующая для усвоения инсулина фруктоза.
3. Пуриновые основания, которые образуются в организме вследствие распада тканей: при онкопроцессах, псориазе . Почему у спортсменов может повышаться мочевая кислота? Это и есть третий путь. Тяжелые физические нагрузки приводят к усилению процессов распада и синтеза тканей. Если вы накануне занимались тяжелым физическим трудом, а утром вы сдаете анализ, уровень мочевой кислоты может быть выше вашего среднего значения.

Знакомимся: аденин и гуанин. Это и есть пуриновые основания. Совместно с тимином и цитозином формируют спираль ДНК. Студенты медики не любят — зубрежка на курсе биохимии:). Как известно, ДНК состоит из двух цепочек. Напротив аденина всегда становится тимин, напротив гуанина — цитозин. Две цепочки ДНК склеиваются как две половинки застежки-молнии. Количество этих веществ повышается при активном распаде тканей, как бывает, например, при онкопроцессах

Рядом последовательных химических реакций пурины преобразуются в мочевую кислоту.

Метаболизм мочевой кислоты у человека и приматов

Планировал максимально упростить для понимания схему. Пусть учат студенты-медики на 2 курсе:). Но названия ферментов оставил. Самый важный момент — фермент ксантиноксидаза . Именно его активность падает при лечении аллопуринолом (точнее эффективность, так как аллопуринол с ним конкурирует за рецептор), чем и снижается синтез мочевой кислоты.
Редко, но всречаются врожденное заболевание,сопровождающееся генетическим нарушением в синтезе ксантиноксидазы, при котором уровень мочевой кислоты снижен. В таком случае накапливаются ксантин и гипоксантин. Ксантинурия. Казалось бы ну и хорошо, меньше мочевой кислоты. Однако выяснилось, что мочевая кислота не только вредна, но и полезна…

Разговор о вреде и пользе мочевой кислоты следует начать очень издалека. Тогда, 17 миллионов лет назад, в эпоху миоцена у наших предков произошла мутация в гене, который продуцирует фермент — уриказу. И нам досталась «урезанная» версия пуринового обмена.

У других млекопитающих уриказа переводит мочевую кислоту в растворимый и легко выводящийся из организма аллантоин. И у этих животных никогда не бывает подагры. Может возникнуть предположение, что в этой мутации нет никакого смысла. Но эволюция этот ген не исключила: мутация оказалась необходимой.

Современные исследования показали, что мочевая кислота является побочным продуктом разложения фруктозы в печени и накопление солей мочевой кислоты способствует эффективному превращению фруктозы в жир. Таким образом, у наших предков в геноме закрепился ген «бережливости». Тогда ген был необходим для создания запасов на голодный период. Было доказано, что окончательная инактивация уриказы совпала с глобальным похолоданием климата на Земле. Нужно было «наесть» как можно больше запасов подкожного жира на холодный период, перевести содержащуюся в плодах фруктозу в жировой запас. Сейчас проводятся ряд экспериментов с введением в клетки печени фермента уриказы. Не исключено, что в дальнейшем на основе фермента уриказы появятся препараты для лечения подагры. Так что склонность к ожирению у нас заложена в генах. На несчастье тем многим мужчинам и женщинам, страдающим полнотой. Но проблема не только в генетике. Изменился характер питания современного человека.

Про вред и пользу мочевой кислоты, а также про питание при гиперурикемии

Известно, что постоянный уровень мочевой кислоты способен значительно повысить риск ряда заболеваний. Однако доказано, что периодическое повышение уровня мочевой кислоты может оказывать положительное действие. Исторически доступ к мясной пище (основному источнику пуринов), был нерегулярным. Основная пища: различные коренья, плоды деревьев. Ну а если принесет первобытный охотник добычу — так это праздник. Поэтому, периодическое от мясных продуктов было обычным образом жизни. Есть добыча — едим до отвала. Нет добычи — едим растительную пищу. Сейчса установлено, что кратковременное, периодическое повышение уровня мочевой кислоты благоприятно вляет на развитие и функцию нервной системы. Может поэтому и начал развиваться мозг?

Как эта мочевая кислота выводится из организма

Пути два: почки и печень
Основной путь — выведение с почками — это 75%
25 процентов выводится печенью с помощью желчи. Поступившая в просвет кишечника мочевая кислота и разрушается (спасибо нашим бактериям в кишечнике).
В почки мочевая кислота попадает в виде натриевой соли. При ацидозе (закислении мочи) в почечных лоханках могут формироваться микролиты. Тот самый «песок» и «камни». Кстати алкоголь очень сильно снижает экскрецию уратов с мочой. Почему и приводит к приступу подагры.

Итак, какой нужно сделать вывод?Методы снижения мочевой кислоты

1. Стараться в неделю 1-2 дня делать чисто вегетарианским
2. Наибольшее количество пуринов содержится в тканях животного происхождения. Причем в животных клетках с активным метаболизмом: печени, почках — больше всего.
3. Нужно есть меньше жирной пищи, так как избыток насыщенных жиров подавляет способность организма перерабатывать мочевую кислоту.
4. Едим поменьше фруктозы. Мочевая кислота — продукт метаболизма фруктозы. Ранее пациентам с сахарным диабетом рекомендовали заменять глюкозу на фруктозу. Действительно, фруктоза для своего усвоения не требует участия инсулина. Но для усвоения фруктоза еще тяжелее. Внимание: в сахаре молекула сахарозы — это дисахарид — глюкоза + фруктоза. Так что сахара едим меньше.
5. Исключить прием алкоголя, особенно пива. Вино в небольших количествах не влияет на уровень мочевой кислоты.
6. Очень интенсивные физические нагрузки повышают уровень мочевой кислоты.
7. Нужно пить много воды. Это позволит эффективно выводить мочевую кислоту.

Если у вас повышена мочевая кислота

Ну во первых, к счастью это не всегда является патологией: кратковременный подъем может быть вариантом нормы
Если все же проблема есть, нужно разобраться, на каком уровне есть нарушение (та самая первая схема): нарушения в синтезе пуринов (тот самый метаболический синдром), алиментарный фактор (много мяса кушаем, пивом запиваем), нарушение функции почек (нарушение экскреции мочевой кислоты)или сопутствующие заболевания, сопровождающиеся разрушением тканей.

Удачи Вам и грамотных докторов.

Если вы нашли опечатку в тексте, пожалуйста, сообщите мне об этом. Выделите фрагмент текста и нажмите Ctrl+Enter .

Казалось бы, такое вещество, как мочевая кислота, трудно сочетается с кровью. Вот в моче – другое дело, там ей место быть. Между тем, в организме постоянно идут различные обменные процессы с образованием солей, кислот, щелочей и других химических соединений, которые выводятся мочой и желудочно-кишечным трактом из организма, поступая туда из кровеносного русла.

Мочевая кислота (МК) тоже присутствует в крови, она образуется в небольших количествах из пуриновых оснований. Необходимые организму пуриновые основания, в основном, поступают извне, с пищевыми продуктами, и используются в синтезе нуклеиновых кислот, хотя в некоторых количествах вырабатываются организмом тоже. Что касается мочевой кислоты, то она является конечным продуктом пуринового обмена и сама по себе организму, в общем-то, не нужна. Ее повышенный уровень (гиперурикемия) указывает на нарушение пуринового обмена и может грозить отложением ненужных человеку солей в суставах и других тканях, вызывая не только неприятные ощущения, но и тяжелые болезни.

Норма мочевой кислоты и повышенная концентрация

Норма мочевой кислоты в крови у мужчин не должна превышать 7,0 мг/дл (70,0 мг/л) или находится в пределах 0,24 – 0,50 ммоль/л. У женщин норма несколько ниже – до 5,7 мг/дл (57 мг/л) или 0,16 – 0,44 ммоль/л соответственно.

Образованная в ходе пуринового обмена МК должна раствориться в плазме, чтобы в дальнейшем уйти через почки, однако плазма не может растворить мочевой кислоты более чем 0,42 ммоль/л. С мочой из организма в норме удаляется 2,36 – 5,90 ммоль/сутки (250 – 750 мг/сут).

При своей высокой концентрации мочевая кислота образует соль (урат натрия), которая откладывается в тофусы (своеобразные узелки) в различных видах тканей, обладающих сродством к МК. Чаще всего тофусы можно наблюдать на ушных раковинах, кистях рук, стопах, но излюбленным местом являются поверхности суставов (локоть, голеностоп) и сухожильные влагалища. В редких случаях они способны сливаться и образовывать язвы, из которых в виде белой сухой массы выходят кристаллы уратов. Иногда ураты обнаруживаются в синовиальных сумках, вызывая воспаление, боль, ограничение подвижности (синовит). Соли мочевой кислоты можно найти в костях с развитием деструктивных изменений костных тканей.

Уровень мочевой кислоты в крови зависит от ее продукции в ходе пуринового обмена, клубочковой фильтрации и реабсорбции, а также канальцевой секреции. Чаще всего повышенная концентрация МК является следствием неправильного питания, особенно, это касается людей, имеющих наследственную патологию (аутосомно-доминантные или связанные с Х-хромосомой ферментопатии), при которой увеличивается выработка мочевой кислоты в организме или замедляется ее выведение. Генетически обусловленная гиперурикемия называется первичной , вторичная вытекает из ряда других патологических состояний или формируется под воздействием образа жизни.

Таким образом, можно сделать вывод, что причинами повышения мочевой кислоты в крови (излишняя продукция или замедленное выведение) являются:

  • Генетический фактор;
  • Неправильное питание;
  • Почечная недостаточность (нарушение клубочковой фильтрации, уменьшение канальцевой секреции – МК из кровяного русла не переходит в мочу);
  • Ускоренный обмен нуклеотидов ( , лимфо- и миелопролиферативные болезни, гемолитическая ).
  • Применение салициловых препаратов и .

Главные причины повышения…

Одной из причин повышения мочевой кислоты в крови медицина называет неправильное питание, а именно, потребление неразумного количества продуктов, аккумулирующих пуриновые вещества. Это – копчености (рыба и мясо), консервы (особенно – шпроты), печень говяжья и свиная, почки, жареные мясные блюда, грибочки и другие всякие вкусности. Большая любовь к этим продуктам приводит к тому, что нужные организму пуриновые основания усваиваются, а конечный продукт – мочевая кислота, оказывается лишней.

Следует отметить, что продукты животного происхождения, играющие не последнюю роль в возрастании концентрации мочевой кислоты, поскольку несут пуриновые основания, как правило, содержат большое количество холестерина . Увлекаясь такими любимыми блюдами, не соблюдая меры, человек может наносить двойной удар по своему организму .

Диета, обедненная пуринами, состоит из молочных продуктов, груш и яблок, огурцов (не маринованных, конечно), ягод, картофеля и других овощей в свежем виде. Консервация, жарка или всякое «колдовство» над полуфабрикатами заметно ухудшают качество пищи в этом плане (содержание пуринов в еде и накопление мочевой кислоты в организме).

…И главные проявления

Лишняя мочевая кислота разносится по организму, где выражение ее поведения может иметь несколько вариантов:

  1. Кристаллы уратов откладываются и образуют микротофусы в хрящевых, костных и соединительных тканях, вызывая подагрические заболевания. Накопленные в хряще ураты, нередко освобождаются из тофусов. Обычно этому предшествует воздействие провоцирующих гиперурикемию факторов, например, новое поступление пуринов и, соответственно, мочевой кислоты. Кристаллы солей захватываются лейкоцитами (фагоцитоз) и обнаруживаются в синовиальной жидкости суставов (синовит). Это – острый приступ подагрического артрита .
  2. Ураты, попадая в почки, могут откладываться в интерстициальной почечной ткани и приводить к формированию подагрической нефропатии, а следом – и почечной недостаточности. Первыми симптомами болезни можно считать перманентно низкий удельный вес мочи с появлением в ней белка и повышение артериального давления (артериальная гипертензия), в дальнейшем происходят изменения органов выделительной системы, развивается пиелонефрит. Завершением процесса считают формирование почечной недостаточности .
  3. Повышенное содержание мочевой кислоты, образование солей (ураты и кальциевые конкременты) при ее задержке в почках + повышенная кислотность мочи в большинстве случаев приводит к развитию почечнокаменной болезни.

Все движения и превращения мочевой кислоты, обусловливающие ее поведение в целом, могут быть взаимосвязаны или существовать изолированно (как у кого пойдет).

Мочевая кислота и подагра

Рассуждая о пуринах, мочевой кислоте, диете, никак не получается обойти вниманием такую неприятную болезнь, как подагра . В большинстве случаев ее связывают с МК, к тому же редкой ее назвать трудно.

Подагра преимущественно развивается у лиц мужского пола зрелого возраста, иной раз имеет семейный характер. Повышенный уровень мочевой кислоты (гиперурикемия) в наблюдается задолго до появления симптомов заболевания.

Первый приступ подагры тоже яркостью клинической картины не отличается, всего-то – заболел большой палец какой-нибудь ноги, а дней через пять человек опять чувствует себя вполне здоровым и забывает об этом досадном недоразумении. Следующая атака может проявиться через большой промежуток времени и протекает более выраженно:

Лечить болезнь непросто, а иногда и не безобидно для организма в целом. Терапия, направленная на проявление патологических изменений включает:

  1. При остром приступе – колхицин, который снижает интенсивность болей, но склонен накапливаться в белых клетках крови, препятствовать их передвижению и фагоцитозу, а, следовательно, участию в воспалительном процессе. Колхицин угнетает кроветворение;
  2. Нестероидные противовоспалительные препараты – НПВП, обладающие обезболивающим и противовоспалительным эффектом, но негативно влияющие на органы пищеварительного тракта;
  3. Диакарб препятствует камнеобразованию (участвует в их растворении);
  4. Противоподагрические препараты пробенецид и сульфинпиразон способствуют усиленному выведению МК с мочой, но применяются с осторожностью при изменениях в мочевыводящих путях, параллельно назначают большое потребление жидкости, диакарб и отщелачивающие препараты. Аллопуринол снижает продукцию МК, способствует обратному развитию тофусов и исчезновению других симптомов подагры, поэтому, наверное, этот препарат один из лучших средств лечения подагры.

Эффективность лечения пациент может значительно повысить, если возьмется за диету, содержащую минимальное количество пуринов (только для нужд организма, а не для накопления).

Диета при гиперурикемии

Малокалорийная диета (лучше всего подходит стол №5, если у пациента все в порядке с весом), мясо и рыбка – без фанатизма, граммов 300 в недельку и не более. Это поможет больному снизить мочевую кислоту в крови, жить полноценной жизнью, не мучаясь приступами подагрического артрита. Пациентам с признаками этой болезни, имеющим лишний вес, рекомендуется использовать стол №8, не забывая разгружаться каждую неделю, но при этом помнить, что полное голодание запрещено. Отсутствие еды в самом начале диеты быстренько поднимет уровень МК и обострит процесс. А вот о дополнительном поступлении аскорбиновой кислоты и витаминов группы В следует подумать всерьез.

Все дни, пока будет длиться обострение заболевания, должны протекать без употребления мясных и рыбных блюд. Пища должна быть не твердой, впрочем, лучше вообще потреблять ее в жидком виде (молоко, фруктовые кисели и компоты, соки из фруктов и овощей, супы на овощном бульоне, каша-«размазня»). Кроме этого, пациент должен много пить (не меньше 2 литров в сутки).

Следует иметь в виду, что значительное количество пуриновых оснований имеется в таких деликатесах, как:

Напротив, минимальная концентрация пуринов отмечается в:

Это краткий список продуктов, которые запрещены или разрешены пациентам, обнаружившим первые признаки подагры и повышенную мочевую кислоту в анализе крови. Снизить мочевую кислоту в крови поможет вторая часть списка (молоко, овощи и фрукты).

Мочевая кислота понижена. Что это может значить?

Мочевая кислота в крови понижена, в первую очередь, при использовании противоподагрических средств, что абсолютно естественно, ведь они снижают синтез МК.

Кроме этого, причиной понижения уровня мочевой кислоты может стать уменьшение канальцевой реабсорбции, наследственно обусловленное снижение продукции МК и в редких случаях – гепатиты и анемия.

Между тем, пониженный уровень конечного продукта метаболизма пуринов (ровно, как и повышенный) в моче связан с более широким кругом патологических состояний, однако анализ мочи на содержание МК не такой уж и частый, он обычно интересует узких специалистов, занимающихся какой-то конкретной проблемой. Для самодиагностики пациентам он вряд ли может пригодиться.

Видео: мочевая кислота в суставах, мнение врача