Нейтрофилы лимфоциты макрофаги. Нейтрофилы

монобласт ® промоноцит ® моноцит ® макрофаг

Стволовая кроветворная клетка (СКК) ® ... ® гранулоцит-макрофагальный предшественник

(precursor, CFU,или КОЕ-колониеобразующая единица)

миелобласт ® промиелоцит ® миелоцит ® нейтрофил

GM-CSF, GM-CSF GM-CSF,

Высокая концентрация GM - CSF контролирует онтогенез макрофагов, низкая - нейтрофилов

Основные отличия фагоцитов - макрофагов и нейтрофилов

Нейтрофилы

Моноциты/макрофаги

Время жизни

в крови - несколько суток, в тканях - длительное время

Способность к делению

отсутствует

тканевые макрофаги способны к делению

Синтетические способности

зрелые нейтрофилы не способны к синтезу

высокая биосинтетическая активность

Способности к репарации мембраны и др. клеточных структур

отсутствует

Наличие антиоксидантных систем

Спектр выполняемых функций

узкий, фактически только фагоцитоз

широкий, участвуют как в реакциях неспецифического иммунитета, активируют и регулируют иммунный ответ

Характеристика фагоцитарного процесса, осуществляемого макрофагами и нейтрофилами

Нейтрофилы

Моноциты/макрофаги

Объекты фагоцитоза

Компоненты собственных разрушенных клеток и тканей, включая апоптические тела, внеклеточно размножающиеся бактерии и грибы, относящиеся к условно патогенным микроорганизмам

Те же, что и для нейтрофилов.

Биологическая цель фагоцитоза

Только киллинг (или разрушение крупных структур для подготовки к элиминации из организма)

Киллинг и распознавание чужеродности для подготовки и активации иммунного ответа

Жизнеспособность клетки после осуществления фагоцитоза

Сохраняется

CD - cluster of differentiation

CAM - cell adhesion molecule

Механизмы адгезии

Адгезия - явление комплексное, в нем одновременно или последовательно принимают участие разные молекулы адгезии («адгезивный каскад»). Фазы адгезии: касание, роллинг, прикрепление (активация и усиление адгезии).

За адгезивные свойства фагоцитов ответственны селектины и интегрины . С помощью селектинов осуществляется роллинг клетки по поверхности эндотелия, с помощью интегринов - твердое прикрепление к поверхности эндотелия.

Селектины (CD62): L- присутствуют на лейкоцитах (кроме активированных Т-клеток памяти),

P -на тромбоцитах,

E - на эндотелиальных клетках

Индукторы селектинов: 1) неспецифические - изменение рН, температруры, микроповреждения клеток, замедление скорости кровотока; 2) специфические - медиаторы и цитокины воспаления (gIFN, TNF, IL-1), митогены, нейропептиды.

Интегрины : CD18, CD11a, CD11b, CD11c

Регуляторы интегринов: 1) неспецифические - изменение рН, температруры, микроповреждения клеток, замедление скорости кровотока; 2) специфические - протеинкиназа С, аутоактивация (взаимодействие единичных сигнальных молекул той же специфичности), взаимодействие с другими адгезивными молекулами.

В целом все адгезивные молекулы объединены в 5 семейств: суперсемейство иммуноглобулинов, интегрины, селектины, кадхерины, протеогликаны и неклассифицированные представители.

Некоторые адгезивные молекулы: номенклатура, экспрессирующие клетки и функции

Фагоцитоз представляет собой филогенетически наиболее древнюю иммунную реакцию и является первой реакцией иммунной системы на внедрение чужеродных антигенов, которые могут поступать в организм в составе бактериальных клеток или вирусных частиц, а также в виде высокомолекулярного белка или полисахарида. Макрофаги и моноциты - древние клетки иммунной системы. Последние являются циркулирующими в периферической крови предшественниками макрофагов, функции которых разнообразны и не исчерпываются потребностями иммунной защиты организма.

Впервые на защитную функцию макрофагов указал И. И. Мечников, открывший явление фагоцитоза и получивший за это Нобелевскую премию 1908 г. В настоящее время известна другая фундаментальная роль макрофагов - представление этими клетками антигенов лимфоцитам. Без этой функции макрофагов невозможно специфическое распознавание чужеродного антигена. Кроме того, макрофаги являются продуцентами многочисленных медиаторов иммунных реакций (интерлейкины, простагландины), а также белков системы комплемента.

Основой эволюционного становления фагоцитоза как иммунологического феномена явилась пищеварительная функция. Предковые одноклеточные организмы поглощали и переваривали чужеродные вещества внешней среды с целью питания. Такой тип питания сохранился у современных протозоа, губок и кишечнополостных. Источником питания, возможно, служили не только неструктурированные вещества, но и прокариоты, среди которых встречается много патогенных микроорганизмов. Несмотря на совершенствование в филогенезе механизмов специфической иммунной защиты, фагоцитарная функция амебоцитов-макрофагов сохранилась в эволюции от одноклеточных до высших многоклеточных, включая млекопитающих.

Моноциты. Основой всей моноцитарно-фагоцитарной системы (МФС) является популяция иммунокомпетентных клеток - моноциты. В периферической крови человека в нормальных условиях содержится обычно 0,2-0,8 10 9 этих клеток в 1 л. После недолгого пребывания в крови моноциты мигрируют в ткани, где формируют МФС. Моноциты присутствуют повсюду - в соединительной ткани, вокруг базальных мембран мелких кровеносных сосудов, высокое содержание их обнаруживается в легких (альвеолярные макрофаги) и печени (клетки Купфера). Макрофаги выстилают синусоиды селезенки и медуллярные

Рис. 8.6 Основные фазы фагоцитоза (1-8) и уничтожение бактерии

синусы лимфатических узлов. Моноцитарное происхождение имеют мезангиальные клетки почечных клубочков, микроглиальные клетки мозга и остеокласты костной ткани. Моноциты, как правило, мигрируют в ткани диффузно, хаотично. В случае появления клеток, несущих чужеродную информацию, возникает хемотаксический сигнал, направляющий и ускоряющий движение моноцитов из кровотока и окружающих тканей. Макрофаги и некоторые другие клетки МФС живут около 2 месяцев, а некоторые субпопуляции - многие годы. Полагают, что именно этими долгоживущими клетками определяется пожизненная фиксация татуировки и «черное легкое» курильщиков. Внесосудистый пул клеток МФС превышает пул моноцитов циркулирующих в крови, примерно в 25 раз. Наиболее богаты ими печень, легкие, селезенка. Во многих тканях (например, в мышечных) плотность расположения макрофагов исключительно низка.

Механизм фагоцитоза однотипен и включает 8 последовательных фаз (рис. 8.6): 1) хемотаксис (направленное движение фагоцита к объекту), 2) адгезия (прикрепление к объекту), 3) активация мембраны (актин-миозиновой системы фагоцита), 4) начало собственно фагоцитоза, связанное с образованием вокруг поглощаемой частицы псевдоподий, 5) образование фагосомы (поглощаемая частица оказывается заключенной в вакуоль благодаря надвиганию на нее плазматической мембраны фагоцита подобно застежке-молнии, 6) слияние фагосомы с лизосомами, 7) уничтожение и переваривание, 8) выброс продуктов деградации из клетки.

Фагоцитозу часто предшествует процесс опсонизации (от греч. opsoniazo - снабжать пищей, питать) объекта (клетки, несущей чужеродную информацию). Инициатором этого процесса является образование на поверхности клетки комплекса антиген-антитело. Опсонизация обеспечивается присутствием небольшого количества в организме молекул антител («нормальные антитела»). Антитела, локализующиеся на поверхности чужеродной клетки, стимулируют активацию и присоединение к ним белков системы комплемента. Образовавшийся комплекс действует как активатор остальных стадий фагоцитоза, стимулирует прямо или через посредство других клеток образование веществ, усиливающих эффект опсонизации чужеродной клетки.

Хемотаксис. Чужеродные клетки (опсонизированные или неопсонизированные) посылают в окружающую среду хемотаксические сигналы, в направлении которых фагоцит начинает двигаться. В качестве хемотаксических факторов рассматривается целый ряд веществ, в том числе продукты метаболизма микроорганизмов. Считается, что на ранних этапах эволюции каждый из этих факторов действовал самостоятельно. У высших организмов, в том числе у человека, все они действуют в комплексе, последовательно включаясь и усиливая друг друга. Пусковым фактором является комплекс антиген-антитело, определяющий высокую специфичность суммарного хемотаксического сигнала. На этот сигнал приходят первые фагоцитирующие элементы, которые, активируя другие иммунокомпетентные клетки, стимулируют их к выработке медиаторов, усиливающих хемотаксис. Далее хемотаксический потенциал усиливается за счет новообразованных антител, усиления образования комплексов антиген-антитело, а также ряда факторов, образующихся при разрушении макрофагами сосудов и тканей в воспалительном очаге. Этот хемотаксический сигнал второго порядка (развитого очага воспаления) обеспечивает поддержание в нем активной работы за счет поступления новых порций иммунокомпетентных клеток. Достигнув очага воспаления, макрофаг останавливается под влиянием фактора торможения миграции лейкоцитов, вырабатываемого Т-лимфоцитами-хелперами. Исчезновение в очаге воспаления чужеродных антигенов, начало процессов регенерации ведет к резкому уменьшению хемотаксического стимула и появлению продуктов, представляющих собой отрицательный хемотаксический сигнал. В результате этого новые фагоциты перестают мигрировать в воспалительный очаг, а оставшиеся жизнеспособные рассеиваются по всей ткани.

Адгезия. Акт адгезии включает две фазы: распознавание чужеродного (специфический процесс) и прикрепление, или собственно адгезию (неспецифический процесс). Адгезия фагоцитирующей клетки к объекту фагоцитоза происходит крайне медленно в том случае, если отсутствует предварительное специфическое распознавание чужеродных клеток. У высших организмов адгезия практически всегда идет с включением специфического компонента. Для активации этого процесса необходимо небольшое количество иммуноглобулинов, которые постоянно присутствуют в организме как нормальные антитела.

Захват (собственно фагоцитоз). Важная роль в осуществлении этого этапа фагоцитоза принадлежит специфическим компонентам иммунной реакции. Известно, что захват неопсонизированных частиц идет медленно, причем часть из них вообще не фагоцитируется. Наиболее сильными опсонинами являются иммуноглобулины. Специфичность в осуществлении фагоцитоза появляется в ходе эволюции как надстройка, физиологически связанная с уже имеющейся иммунной системой. В процессе фагоцитоза плазматическая мембрана макрофага при помощи образованных ею выступающих складок захватывает объект фагоцитоза и обволакивает его. Образующаяся при этом небольшая вакуоль называется фагосомой. В дальнейшем фагосома отрывается от поверхности мембраны и перемещается в цитоплазму.

Киллинг (убийство). В фагосоме захваченная чужеродная клетка гибнет. Для осуществления киллинга макрофаг продуцирует и секретирует в фагосому реакционноспособные производные кислорода.

Переваривание. Последний этап фагоцитоза - переваривание захваченного и убитого материала. Для этого с фагосомой, содержащей объект фагоцитоза, объединяются лизосомы, которые содержат более 25 различных ферментов, в число которых входит большое количество гидролитических энзимов. В фагосоме происходит активация всех этих ферментов, так называемый метаболический взрыв, в результате которого фагоцитированный объект переваривается. Часть молекул антигена при этом разрушается не полностью, их антигенная активность может существенно возрастать. Далее фагосома с остаточным антигеном выбрасывается на поверхность клетки, высвобождая иммуногенный антиген, что имеет важное значение для индукции лимфоцитами специфического иммунного ответа.

Нейтрофилы. Главный барьер против микробных инфекций представляют нейтрофилы - популяция лейкоцитов, иначе называемая микрофагами, или микрофагоцитами. Они имеют много общего с другими форменными элементами крови гемопоэтического стволового предшественника. В крови человека нейтрофилы доминируют среди остальных лейкоцитов. Они представляют собой неделящиеся короткоживущие клетки с сегментированным (более зрелые сегментоядерные нейтрофилы) и несегментированным (менее зрелые палочкоядерные нейтрофилы) ядром и набором гранул, различающихся по морфологии, гистогенезу, биохимическому составу, плотности и скорости функциональной мобилизации. Примерно 70% нейтрофилов не циркулируют в крови, а прикреплены к эндотелию сосудов. Главный резервуар пристеночных нейтрофилов - микрососуды легких: число депонированных здесь клеток в несколько раз превосходит количество циркулирующих нейтрофилов.

Срок пребывания нейтрофилов в кровотоке составляет около 6,5 ч. Далее нейтрофилы, проникая через эндотелий сосудов, попадают в ткани, где и заканчивают свое существование в течение 3-5 сут, осуществляя свои эффекторные функции, очень похожие на те, которые присущи макрофагам. Значительная часть нейтрофилов приходит к эпителию слизистых оболочек и, проникая через него, заканчивает свой жизненный цикл в слизистом надэпителиальном слое (срок жизни таких нейтрофилов исчисляется часами).

У нейтрофилов известны три типа гранул: первичные азурофильные гранулы, содержащие миелопероксидазу, небольшое количество лизоцима и набор катионных белков; вторичные «специфические» гранулы, содержащие лактоферрин, лизоцим и белок, связывающий витамин B 12 ; третичные гранулы (мельчайшие гранулы, или С-частицы), содержащие кислые гидролазы, а также практически всю желатиназную активность нейтрофила. Дегрануляция нейтрофилов может быть истинной, когда гранулы целиком выталкиваются из клетки (экзоцитоз), но чаще из гранул выделяются только растворимые компоненты и имеет место вторичное запустевание гранул (так называемая секреторная дегрануляция). Обширные запасы гликогена, который может быть использован при гликолизе, позволяют нейтрофилам существовать в анаэробных условиях.

Основной функцией нейтрофилов является уничтожение чужеродных клеток или веществ биополимерной природы путем фагоцитоза. Эту функцию нейтрофилы осуществляют только после выхода их из сосудистого пула. Процесс фагоцитоза, осуществляемого нейтрофилами, состоит из тех же самых этапов, которые выше описаны для макрофагов. В отличие от макрофагов, нейтрофилы могут фагоцитировать чужеродную клетку или частицу только один раз, после чего они гибнут.

Хемотаксис нейтрофилов обусловлен в основном продуктами жизнедеятельности бактерий или денатурированными белками разрушенных клеток собственного организма, т. е. в определенной степени эта стадия фагоцитоза является специфичной. Суммарный хемотаксический эффект усиливается многочисленными факторами разнообразной природы, активирующимися в начале разрушения чужеродного. Сам нейтрофил, будучи активированным в начале фагоцитоза, также выделяет ряд хемотаксических факторов. Благодаря каскадному усилению хемотаксического сигнала к месту разрушения объекта фагоцитоза привлекается большое количество нейтрофилов.

Уничтожение чужеродных клеток фагоцитами (макрофагами и нейтрофилами). Антигенная стимуляция резко меняет метаболический профиль фагоцитирующих клеток. К наиболее выраженным сдвигам относится резкое увеличение потребления глюкозы в реакциях гексозомонофосфатного шунта (ГМФШ), генерирующего НАДФ Н для восстановления молекулярного кислорода на мембранах цитохрома b -245. Если в покоящемся нейтрофиле подобным образом утилизируются лишь 1-2% глюкозы, то стимулированный нейтрофил способен окислить до 30% глюкозы. Одновременно возрастает потребление кислорода и образование оксидантов с мощным энергетическим потенциалом. Этот процесс

называют респираторным взрывом.

В результате респираторного взрыва образуются мощные бактерицидные агенты: супероксидный анион (О 2 -), перекись водорода H 2 0 2), синглетный кислород (1 O 2), гидроксильные радикалы (ОН -). Сочетание перекиси водорода, миелопероксидазы и ионов галогенов создает мощную систему галогенирования, приводящую к появлению крайне агрессивных вторичных метаболитов: гипохлорной кислоты (НОСl), хлорамина, продуктов перекисного окисления липидов (ПОЛ). Ключевым считается супероксидный анион, с которого берет начало каскад активных форм кислорода и сопряженных с ним феноменов. Избыток энергии реализуется путем выделения тепла, повышенной химической активностью (отсюда высокая биопидность), либо эмиссией квантов света (хемилюминесценция).

Кислороднезависимые механизмы. При дисмутации супероксидного аниона потребляются ионы водорода и слегка повышается рН, это создает оптимальные условия для функционирования семейства катионных белков. Эти белки, имеющие высокую изоэлектрическую точку, разрушают бактериальную стенку за счет протеиназного эффекта и за счет непосредственного присоединения к поверхности микроорганизма. Низкие значения рН, устанавливающиеся после слияния фагосомы с лизосомами, лизоцим и лактоферрин представляют собой Кислороднезависимые бактерицидные и бактериостатические факторы, которые могут действовать в анаэробных условиях. Убитые микроорганизмы расщепляются гидролитическими ферментами, и продукты деградации высвобождаются из фагоцитарной клетки.

Разные формы реактивности фагоцитов обеспечиваются и проявляются нередко независимо друг от друга. При хроническом грануломатозе макрофаги и нейтрофилы в связи с дефектом цитохромов b-245 не способны образовывать активные метаболиты кислорода. Это сопровождается тем, что бактерии фагоцитируются, но не уничтожаются в клетках. Кроме того, известно, что многие микроорганизмы содержат в большом количестве каталазу и могут легко инактивировать продуцируемую фагоцитами перекись водорода. Фагоциты, дефектные по глюкозо-6-фосфатдегидрогеназе, не способны продуцировать активные метаболиты кислорода и защищать организм от бактериальных инфекций. При синдроме «ленивых лейкоцитов» нарушена реакция нейтрофилов на хемотаксические сигналы.


Нейтрофильные сегментоядерные лейкоциты (нейтрофильные грануло- циты, или нейтрофилы) - преобладающая популяция белых клеток крови. Развитие нейтрофилов контролируется цитокинами, из которых главную роль играет G-CSF, а вспомогательную - GM-CSF, IL-3 и IL-6. Повышение содержания нейтрофилов в условиях воспаления регулируется цитокинами IL-17 и IL-23. IL-23 индуцирует образование IL-17, а он стимулирует выработку G-CSF.
В крови человека содержится 2,0-7,5х109/л нейтрофилов, что составляет 50-70% от общего числа лейкоцитов крови; также в крови присутствует некоторое количество (0,04-0,3х109/л, т.е. 1-6%) палочкоядерных форм нейтрофилов, не завершивших созревание. Ядро таких клеток не сегментировано, хотя и имеет уплотненную структуру хроматина. В кровотоке присутствует только 1-2% общего числа зрелых нейтрофилов в организме (остальные представлены в тканях, преимущественно в костном мозгу). Срок их пребывания в циркуляции составляет 7-10 ч.
После кратковременной циркуляции нейтрофилы покидают кровоток и мигрируют в ткани. Примерно 30% нейтрофилов, выходящих из кровотока, мигрируют в печень и костный мозг; около 20% - в легкие (точнее в их микроциркуляторное русло); около 15% - в селезенку. Основными хемо- таксическими факторами для нейтрофилов служат лейкотриен В4 и IL-8, в небольших количествах вырабатываемые в тканях. Миграция происходит с участием молекул адгезии (Р2-интегрины, Р- и Е-селектины), а также фермента эластазы, секретируемого самими нейтрофилами. Через 3-5 сут пребывания в тканях нейтрофилы подвергаются спонтанному апоптозу, т.е. запрограммированной гибели (см. раздел 3.4.1.5), и их фагоцитируют резидентные макрофаги, что предотвращает нанесение ущерба окружающим клеткам. В настоящее время допускается возможность превращения небольшой фракции тканевых нейтрофилов в долгоживущую форму и даже их дифференцировки в макрофаги. В целом функция тканевых нейтрофилов остается невыясненной.
Диаметр нейтрофилов составляет 9-12 мкм. Им свойственна уникальная морфология: ядро сегментированное (обычно состоит из 3 сегментов) с плотно упакованным хроматином (гетерохроматином); цитоплазма содержит нейтральные (по данным окрашивания) гранулы, что и определяет название этих клеток. Особенности хроматиновой структуры ядра (недоступность промоторных участков для дифференцировочных факторов) значительно ограничивает экспрессию генов и синтез макромолекул нейтрофилами de novo. Тем не менее, вопреки ранее существовавшим представлениям, нейтрофилы сохраняют способность к биосинтезу, хотя и в ограниченном масштабе.
Поскольку нейтрофилы имеют характерную морфологию, потребность в определении их мембранного фенотипа возникает только при специальном цитометрическом анализе (табл. 2.1). Для нейтрофилов характерна экспрессия на поверхности клетки ряда молекул: CD13 (аминопептидаза N, рецептор для ряда вирусов), CD14 - рецептора для липополисахарида (ЛПС) (представлен в меньших количествах, чем на моноцитах), в2-интегринов (LFA-1, Mac-1 и p155/95); Fc-рецепторов , рецепторов для компонентов комплемента (CR1, CR3 и CR4), рецепторов для хемотаксических факторов (C3aR, С5аR, рецептор для лейкотриена B4). Под влиянием ряда цитокинов (прежде всего GM-CSF) нейтрофилы экспрессируют молекулы MHC класса II (MHC-II); молекулы МНС-I экспрессируются на них конститутивно. Наиболее важные молекулы, определяющие развитие, миграцию и активацию нейтрофилов, - рецепторы для G-CSF (основного фактора, регулирующего их развитие), а также для IL-17 и IL-23, основного хемотаксического фактора - IL-8 (CXCR1, CXCR2) и хемокина, определяющего связь нейтрофилов с тканями - SDF-1 (CXCR4).
Таблица 2.1. Мембранные молекулы нейтрофилов, эозинофилов и моноцитов

Окончание табл. 2.1


Группа молекул

Нейтрофилы

Эозинофилы

Моноциты

Лектиновые
рецепторы

Дектин-1


DC-SIGN, дектин-1

Fc-рецепторы

FcyRII, FcyRIII, FcaR; при активации - FcyRI

FcyRII, FcyRIII, FceRI, FceRII, FcaR; при активации - FcyRI

FcyRI, FcyRII, FcyRIII;
при активации - FcaR

Рецепторы
комплемента

CR1, CR3; C3aR, C5aR, C5L2

CR1; C3aR

CR1, CR3, CR4; C3aR, C5aR

Цитокиновые
рецепторы

Для G-CSF, GM- CSF, IL-3, IL-17

Для GM-CSF, IL-3, IL-4, IL-5, IL-13

Для M-CSF, GM- CSF, IFNy, IFNa/p, IL-1, IL-2, IL-3, IL-4, IL-6, IL-10, IL-15, IL-21, TNFa и т.д.

Хемокиновые
рецепторы

CXCR1, CXCR2, CXCR3, CXCR4

CCR1, CCR2, CCR3, CCR5

CCR1, CCR2, CCR3, CCR5, CX3CR1

Интегрины

P2 - LFA-a, Mac-1, aDP2; рецептор - ICAM-2

Pj - VLA-4;
P2 aD?2

Р1 - VLA-1, VLA-2, VLA-4, VLA-5, VLA-6; p2 - LFA-1, Mac-1, p150, p45, aDP2; рецепторы - ICAM-2, ICAM-3

Молекулы главного комплекса гистосовместимости (MHC)


MHC-I; при активации - MHC-II

MHC-I, MHC-II (при активации усиливается)

Костимулирую- щие молекулы


При активации - CD154

CD86 (слабо); при активации - CD80, CD86

Другие молекулы

CD14, CD13

CD9

CD14, CD13

Наибольшее своеобразие свойственно гранулам нейтрофилов (табл. 2.2), представляющим разновидность лизосом. Различают 4 разновидности гранул этих клеток: азурофильные (первичные), специфические (вторичные), желатиназные (третичные) и секреторные везикулы. Специфические гранулы содержат ферменты, проявляющие свою активность при нейтральных и слабощелочных значениях рН: лактоферрин, щелочную фосфатазу, лизоцим, а также белок BPI, связывающий витамин В12. Маркерами этой разновидности гранул служат лактоферрин и мембранная молекула CD66. В специфических гранулах содержится большое количество фермента NADPН-оксидазы, катализирующего «кислородный взрыв» и образование активных форм кислорода - главных факторов бактерицидности фагоцитов. Азурофильные гранулы содержат широкий набор гидролаз и других ферментов, активных при кислых значениях рН: миелопероксидазу, а-фукозидазу, 5’-нуклеотидазу, р-галактозидазу, арилсульфатазу, а-ман- нозидазу, N-ацетилглюкозаминидазу, p-глюкуронидазу, кислую глицеро- фосфатазу, лизоцим (мурамилидазу), нейтральные протеазы (серпроциди- ны) - катепсин G, эластазу, коллагеназу, азурацидин, а также дефензины, кателицидины, лактоферрин, гранулофизин, кислые глюкозаминоглика- ны и другие вещества. Маркерами азурофильных гранул служат фермент миелопероксидаза и мембранная молекула CD63. Желатиназные (третичные) гранулы в соответствии с названием содержат желатиназу. Наконец, четвертый тип гранул - секреторные везикулы - содержат щелочную фосфатазу.
Таблица 2.2. Свойства гранул клеток врожденного иммунитета

Тип клеток

Разновидность
гранул

Состав гранул

Функциональное назначение содержимого

Нейтрофилы

Специфические
(вторичные)

NAGPH-оксидаза, лак- тоферрин, щелочная фосфатаза, лизоцим и т.д.

Быстрая фаза бактериолиза


Азурофильные
(первичные)

Миелопероксидаза, кислые гидролазы, лизоцим, дефензины, нейтральные протеазы (серпроцидины) и т.д.

Медленная фаза бактериолиза


Желатиназные
(третичные)

Желатиназа

Обеспечение миграции


Секреторные
везикулы

Щелочная фосфатаза

Взаимодействие с микроокружением

Эозинофилы

Специфические (крупные, вторичные)

Главный основный белок, катионный белок, пероксидаза, нейротоксин, коллаге- наза, миелопероксидаза, цитокины: GM-CSF, TNFa, IL-2, IL-4, IL-6

Внеклеточный
цитолиз


Мелкие

Арилсульфатаза В, кислая фосфатаза, пероксидаза

Бактерицидность


Первичные

Лизофосфолипаза (в кристаллах Шарко -Лейдена)

Липидный метаболизм


Липидные тельца

Арахидоновая кислота, липоксигеназа, циклоксигеназа

Выработка эйкозано- идов

Тучные
клетки

Базофильные

Гистамин, протеазы, пептидогликаны, гли- козаминогликаны, протеин Шарко-Лейдена, пероксидаза

Предобразованные факторы немедленной аллергии

Окончание табл. 2.2

При стимуляции нейтрофилов в первую очередь происходит высвобождение содержимого секреторных пузырьков. Преодолевать базальные мембраны нейтрофилам позволяет секрет желатиназных гранул. Специфические, а затем азурофильные гранулы сливаются с фагосомами в процессе фагоцитоза (через 30 с и 1-3 мин после поглощения частицы соответственно). Комплекс бактерицидных факторов, присутствующих в гранулах, обеспечивает разрушение многих микроорганизмов (см. раздел 2.3.5). Наиболее эффективно содержимое гранул повреждает стрептококки, стафилококки и грибы (включая кандиды). Содержимое гранул, особенно азурофильных, может секретироваться в результате дегрануляции. После дегрануляции восстановления гранул не происходит.
Наряду с моноцитами/макрофагами нейтрофилы рассматривают как основные фагоцитирующие клетки (см. 2.3.4). При этом нейтрофилы мигрируют из крови в очаг воспаления значительно быстрее моноцитов (табл. 2.3). Скорость мобилизации нейтрофилов дополняется их способностью развивать метаболические процессы («кислородный взрыв») в течение секунд. Все это делает нейтрофилы оптимально приспособленными для осуществления ранних этапов иммунной защиты в рамках острой воспалительной реакции.
Таблица 2.3. Функциональные различия нейтрофилов и моноцитов/макрофагов

Свойство

Нейтрофилы

Моноциты/макрофаги

Сроки жизни

Короткий (3-5 сут)

Длительный (недели, месяцы)

Темп мобилизации и активации

Быстрый (минуты)

Более медленный (часы)

Длительность активации

Короткая (минуты)

Длительная (часы)

Способность к пиноцитозу

Умеренная

Высокая

Способность к фагоцитозу

Очень высокая

Высокая

Регенерация мембраны

Отсутствует

Происходит

Реутилизация фагосом

Невозможна

Возможна

Нелизосомная секреция

Отсутствует

Имеется

Fc-рецепторы

FcyII, FcyIII; при

FcyI (спонтанно), FcyII,


активации - FcyI

FcyIII

Фагоциты - основная группа клеток системы врожденного иммуни­тета. Они имеют миелоидное происхождение и обладают способностью к фагоцитозу (см. раздел 2.1.3). По морфологии и функции их разделяют на мононуклеарные клетки (моноциты/макрофаги) и нейтрофилы, что соответствует предложенному И.И.

Мечниковым разделению на макро- и микрофаги. Роль фагоцитов в иммунном ответе крайне многообразна. Они выполняют ряд ключевых функций во врожденном и в адаптивном имму­нитете. Активация фагоцитов происходит через многие поверхностные рецепторы. Ведущую роль в активации фагоцитов играют РЕК врожден­ного иммунитета (например, ТЬК, ИОБ-рецепторы, маннозные рецепто­ры, рецепторы-«мусорщики», рецепторы комплемента и многие другие). Ответная реакция развивается быстро, не требует пролиферации и диффе­ренцировки клеток.

Активация обычно происходит в два этапа: прайминг и собственно активация. Суть прайминга заключается в том, что предварительная обра­ботка клеток небольшим количеством стимулятора (1-й сигнал), действие которого не вызывает прямой активации, сопровождается усилением отве­
та фагоцитов на второй сигнал. В результате активированные фагоциты выполняют следующие функции:

Хемотаксис;

Фагоцитоз;

Образование активных форм кислорода;

Синтез оксида азота;

Синтез и секреция цитокинов и других биологически активных медиа- торных молекул (метаболиты арахидоновой кислоты, компоненты комплемента, факторы свертывания крови, белки матрикса, ферменты, противомикробные пептиды, гормоны и др.);

Бактерицидную активность;

Процессиг и презентацию антигена (профессиональные АПК - ДК, мононуклеарные фагоциты).

Основные типы клеток, участвующих в развитии воспаления - универ­сальной защитной реакции организма на повреждение, - нейтрофилы, моноциты, макрофаги, а также клетки эндотелия и фибробласты. Первыми в очаг воспаления мигрируют нейтрофилы (в первые часы, сутки), затем макрофаги (в течение нескольких дней) и самыми последними - лимфо­циты. При остром воспалении преобладают нейтрофилы и активирован­ные Т-хелперы, при хроническом воспалении больше макрофагов, ЦТЛ и В-лимфоцитов. Такая периодичность миграции лейкоцитов в очаг воспале­ния обусловлена хемокинами и молекулами адгезии.

Хемокины - группа низкомолекулярных цитокинов молекулярной массой 8-10 кДа, индуцирующих процесс миграции лейкоцитов из крови. В настоящее время идентифицировано больше 40 различных хемокинов. По химической структуре, а именно в зависимости от положения остат­ков цистеина в молекуле, выделяют четыре основные группы хемокинов (табл. 4-3).

Избирательное вовлечение различных популяций лейкоцитов в форми­рование очагов воспаления обеспечивается экспрессией различных рецеп­торов хемокинов. ТЫ-клетки и моноциты экспрессируют хемокиновый рецептор ССК5, что обеспечивает ответ на хемокин ССЬЗ. ТЬ2-клетки, эозинофилы и базофилы экспрессируют ССКЗ, необходимый для ответа на ССЫ1. Следует отметить, что обе группы клеток экспрессируют рецеп­торы ССК1 и ССК2, чем обусловлен ответ на ССЬ2, ССЬ7, ССЬ8 и ССЫЗ. Известно, что на нейтрофилах экспрессируются СХСК1 и СХСК2 - рецеп­торы ИЛ-8, СХС1Л и СХСЬ2.

Вызванное воспалением проникновение нейтрофилов из сосудов в ткани обеспечивается рядом адгезивных взаимодействий между лейкоцитами и клетками эндотелия, а также действием хемокинов.

В табл. 4-4 представ­лены некоторые клинически значимые молекулы адгезии и их лиганды. Выделяют две группы молекул адгезии: селектины и интегрины.

Семейство

хемокинов

Представители

семейства

Рецепторы Клетки-мишени Биологические эффекты
С

у-хемокины

Лимфотактин ХСВ В основном Т-лимфоциты Дифференцировка, миграция лим­фоцитов
СС

р-хемокины

Эотоксин ССПЗ Т-клетки, моноциты, эозино­филы Воспаление в тканях
ВА1\1ТЕЗ ССР1, ССПЗ, ССК5 Т-лимфоциты (ТИ2), дендритные клетки, 1\1К-клетки, моноциты, эозинофилы, базофилы Воспаление в тканях, дегрануляция базофилов, активация Т-клеток
М1Р-1а ССР1, ССВЗ, ССВ5 ТИ1 -лимфоциты, дендритные клетки, 1\1К-клетки, моноциты, базофилы Активация клеток, продуцирующих ИФН-у, конкурирует с ВИЧ-1 за свя­зывание с рецептором
М1Р-1 р ССВ1, ССВЗ, ССВ5 Активированные Т-клетки, дендритные клетки, !\1К-клетки, моноциты Конкурирует с ВИЧ-1 за связывание с рецептором
СХС

ос-хемокины

ИЛ-8 СХСВ1, СХСВ2 Нейтрофилы, Т-клетки Ангиогенез, активация нейтрофилов
50Р-1 а/р СХСЯ4 Т-клетки, СР34+-клетки - пред­шественники В-лимфоцитов (костный мозг) Хоминг лимфоцитов, развитие В-клеток
1Р-10 СХСРЗ Моноциты, [\1К-клетки, ТМ- лимфоциты Подавление ангиогенеза, активация клеток, продуцирующих ИФН-у
СВОа СХСВ2 Нейтрофилы Активация нейтрофилов
свор СХСВ2 Т-клетки Пролиферация фибробластов
ЗРОу СХСР2 Фибробласты Ангиогенез
р-те СХСВ2 Нейтрофилы Активация нейтрофилов, ангиогенез, резорбция тромба
СХХХС

5-хемокины

Фракталкин СХЗСВ1 Моноциты, Т-клетки Воспалительные процессы в мозге, адгезия лейкоцитов к эндотелию

ЭФФЕКТОРНЫЕ МЕХАНИЗМЫ АДАПТИВНОГО И ВРОЖДЕННОГО ИММУНИТЕТА

Таблица 4-4. Некоторые клинически значимые адгезивные молекулы
Молекула адгезии Лиганд Клинические

последствия

взаимодействия

Последствий дефекта экспрессии
Семейство ^-интегринов
\/1_А-4* (С049с1/ СЭ29), экспресси­рованы на лимфо­цитах и моноцитах УСАМ-1**, экс­прессирован на эндотелии Адгезия лимфоци­тов и моноцитов на эндотелии Нарушение миграции лимфоцитов и моноцитов в ткани
Семейство $2-интегринов
С018/СО а экс­прессированы на всех типах лей­коцитов 1САМ-1***, на эндотелии Адгезия всех типов лейкоци­тов к эндотелию сосудов Тяжелый иммунодефицит, прояв­ляющийся нейтропенией, возврат­ными инфекциями бактериальной и грибковой природы, уменьшени­ем способности нейтрофилов к хемотаксису в ткани


Различают Е-селектины (на клетках эндотелия), Ь-селектины (на лей­коцитах) и Р-селектины (на тромбоцитах). Селектины связываются с углеводными остатками на поверхности лейкоцитов и клеток эндотелия и участвуют в миграции клеток в очаг воспаления.

Интегрины - основные молекулы межклеточной адгезии. Это гетероди­меры, состоящие из а- и р-субъединиц, соединенных нековалентными свя­зями. Интегрины пронизывают клеточную мембрану и через адаптерные молекулы талин и винкулин связываются с цитоскелетом. В зависимости от типа р-цепи, входящей в состав молекулы, выделяют три семейства инте- гринов.

р^Интегрины обеспечивают связывание клеток с внеклеточным матрик­сом. р2-Интегрины участвуют в адгезии лейкоцитов к клеткам эндотелия. Р3-Интегрины обусловливают взаимодействие тромбоцитов и нейтро- филов. Дефицит р2-интегрина ЬРА-1 (С018/СБ11) приводит к развитию врожденного дефекта фагоцитов - синдрома дефицита адгезии лейкоцитов (ЬАЭ-синдром), сопровождающегося тяжело протекающими инфекцион-

ными заболеваниями бактериальной и грибковой природы, уменьшением миграции фагоцитов в ткани (см. раздел 11.2.5).

Вызванный воспалением процесс проникновения лейкоцитов в ткани из сосудистого русла обеспечивается рядом адгезивных взаимодействий и включает несколько этапов (рис. 4-20):

Роллинг (перекатывание);

Адгезию;

Проникновение в ткани.

Рассмотрим этапы проникновения лейкоцитов в ткани на примере ней­трофилов. Первый этап - роллинг (качение) нейтрофилов по поверхности клеток эндотелия - происходит при участии селектинов. В норме клетки эндотелия сосудов не несут молекул адгезии. При активации в очаге вос­паления клетки начинают экспрессировать Е-селектины и рецепторы для селектинов. Скорость нейтрофилов в кровотоке замедляется за счет взаи­модействия Е-селектина и углеводной детерминанты Ье\У1$-Х, связаннйой с СБ15-молекулой нейтрофила.

Ь-селектины нейтрофилов взаимодействуют с сиаломуцином (СБ34), расположенным на эндотелии. Активированные эндотелиальные клетки секретируют ИЛ-8, индуцирующий смену селектинов на поверхности ней­трофилов и стимулирующий экспрессию (52-интегринов. Активация клеток эндотелия происходит при развитии местной воспалительной реакции под действием локально образующихся провоспалительных цитокинов ИЛ-1р и ФНО-а.

Второй этап - адгезия - образование прочных связей между лейкоци­тами и эндотелиальными клетками, осуществляемое за счет интегрино- вых взаимодействий. Лигандами Р2-иптегринов служат молекулы группы 1САМ.

Третий этап - миграция нейтрофилов между клетками эндотелия (транс­эндотелиальная миграция) осуществляется под действием хемокинов.

Последующая миграция нейтрофилов в ткани основана на хемотакси­се. Хемоаттрактанты для нейтрофилов существуют в очаге воспаления.

Цитокин(хемокин)зависимая

К ним относятся фактор активации тромбоцитов (ФАТ), лейкотриен В4, компоненты комплемента (С5а), Ы-формил-метионил-пептиды бакте­рий, ИЛ-8. Провоспалительные цитокины повышают уровень экспрессии р2-интегринов, 1САМ-1, ИЛ-8.

В зоне воспаления фагоциты начинают распознавать опсонизированные патогены. В качестве опсонинов выступают чаще всего инактивированные компоненты комплемента \СЗЪ и молекулы 1^0. В распознавании опсо- низированных патогенов участвуют рецепторы комплемента: СК1, СКЗ (у макрофагов важную роль играет СК4) и РсуК (СБ64, СБ32, СБ16). Эти

взаимодеиствия индуцируют процесс поглощения.

Нейтрофилы и макрофаги обладают мощным потенциалом для уничто­жения патогенов. Выделяют кислородзависимые и кислороднезависимые механизмы бактерицидное™ фагоцитов.

Резидентные макрофаги удаляют апоптозные клетки и эндогенные моле­кулы организма, модифицированные вследствие патологического процесса (так называемые эндогенные лиганды: например, модифицированный кол­лаген, белки теплового шока, липиды низкой плотности и др.), с помощью рецепторов-мусорщиков. В данном случае активации макрофагов и разви-

Инфекция

То11-подобные рецепторы

/ф СР14 (рецептор у к липополисахариду)

Рецептор, распознающий остатки маннозы

(фактор хемотаксиса нейтрофилов)

(активирует МК-клетки, способствует дифференцировке ТНО в ТМ)

> Другие медиаторы: простагландины, радикалы кислорода, оксид азота

тия механизмов цитотоксичности не происходит. Поглощение чужеродных клеток и патогенов приводит к активации макрофагов.

Функциональная активность макрофагов регулируется цитокинами. Цитокины, продуцируемые ТЫ- и ТЬ2-клетками, индуцируют в макрофаге разные реакции. ИФН-у стимулирует выработку активных форм кислорода, провоспалительных цитокинов, экспрессию МНС-Н.

ИЛ-4 и ИЛ-13 угнетают эти функции макрофага, но способствуют обра­зованию гигантских клеток в гранулемах, выработке факторов роста, сти­мулируя тем самым заживление повреждений ткани. Эти цитокины вызы­вают альтернативную активацию макрофагов (см. рис. 3-32, рис. 3-33).

Исключительно важную роль в активации фагоцитов и в реализации их кислородзависимой бактерицидной функции играют активные формы кислорода и оксида азота, образуемые в процессе кислородного или дыха­тельного взрыва.

В основе дыхательного взрыва лежит усиление потребления глюкозы и ее расщепление с участием ЫАЮРН по механизму гексозомонофосфатного шунта, что сопровождается накоплением ЫАБРН. Взаимодействие ЫАОРН с молекулой кислорода при участии ИАОРН-оксидазы приводит к обра­зованию супероксид аниона (О2-), из которого с участием ионов водорода образуются потенциально токсичные для бактерий гидроксильные ради­калы (ОН), перекись водорода (Н202) и синглетный кислород. Этот про­цесс начинается спонтанно после образования фагосомы перед слиянием с лизосомой. Наиболее выражен бактерицидный эффект в фаголизосомах. Образование Н202 происходит спонтанно и при участии супероксиддисму- тазы. Фермент миелопероксидаза обеспечивает образование гипохлорида из Н202 с участием ионов галогенов. Оксид азота (N0) образуется в резуль­тате расщепления аргинина до цитруллина и катализируется ЫО-синтазой (рис. 4-22).

Оксид азота (N0) участвует во многих физиологических и патологиче­ских процессах как на клеточном, так и на организменном уровне, оказывая защитное, регуляторное и повреждающее действия.

Регуляторное действие N0 проявляется в поддержании тонуса и прони­цаемости сосудов, подавлении адгезии тромбоцитов, в модуляции клеточ­ной адгезии, нейротрансмиссии и бронходилатации, а также в регуляции некоторых функций почек и иммунной системы.

Под защитным действием оксида азота подразумевают его антиокисли- тельные свойства, т.е, защиту от агентов окислительного стресса (перекись водорода, алкильные гидроперекиси, супероксидный анион-радикал и др.), снижение адгезии лейкоцитов и антитоксический эффект, в частности, про­тив ФНО-а.

Повреждающее действие оксида азота оказывается через подавление функций ферментов, индукцию процессов перекисного окисления липидов

оксидаза

г;г

ОН НОС1 01400" 8-нитрозотиолы

Рис. 4-22. Схема образования бактерицидных веществ фагоцитами (активных форм кис­лорода и оксида азота).

и повреждения ДНК клетки, повышение чувствительности клетки к дей­ствию радиации, алкилирующих агентов и токсичных металлов, а также через истощение антиокислительных возможностей клетки. Непрямое

цитотоксическое действие оксида азота осуществляется за счет изменения цитокинового равновесия и опосредованной ИЛ-12 активации ЫК-клеток и ЦТЛ. Сам по себе оксид азота не является мощным цитотоксическим агентом, но он может усиливать чувствительность клеток к действию дру­гих цитотоксических веществ. Наиболее выраженной антибактериальной активностью обладают соединения, образовавшиеся при взаимодействии активных форм кислорода и оксида азота. В результате взаимодействия N0 с активными формами кислорода и некоторыми другими соедине­ниями образуются цитотоксические вещества, включая пероксинитрит (ОЖЮ), 5-нитрозотиолы (К5Ы0), диоксид азота (ЬГО2), динитроген три- оксид (]М203), динитроген тетраоксид (И204) и железодинитрозильные комплексы (ЬЫ1С).

Эффекты оксида азота принято разделять на основные и опосредо­ванные. Основные эффекты включают реакции, в которых он непосред­ственно взаимодействует со специфическими биологическими моле­кулами (например, с гуанилатциклазой, цитохромом Р450 и др.).

Опосредованные эффекты действия оксида азота связаны с реактивными формами азота, образующимися при взаимодействии N0 с кислородом или с супероксидным анион-радикалом.

Основные и побочные эффекты реакций с непосредственным участием оксида азота определяются его локальной концентрацией. Основные эффек­ты вероятны при низких концентрациях оксида азота (меньше 1 мкМ), тогда как побочные эффекты, включая образование радикалов, становятся воз­можными при более высоких его концентрациях (больше 1 мкМ).

Оксид азота 1п уЬю образуется с участием 1М0-синтазы (N05), суще­ствующей у млекопитающих в трех изоформах: пЫ05 - нейтральной (1-й тип); 1Ы05 - индуцибельной (2-й тип); еЫ05-синтаза - эндотелиаль­ной (3-й тип).

В макрофагах функционирует 1Ы05, экспрессию которой стимулируют

некоторые цитокины и продукты микроорганизмов, часто действующие в синергизме. ЫО-синтазы типов ] и 3 называются также сЫ05 - избира­тельными (существуют в клетках и могут быть активированы притоком кальция, который в последующем связывается с кальмодулином). В при­сутствии 1И08 оксид азота вырабатывается в больших количествах и часто оказывает побочные эффекты, такие, как перекисное окисление липидов и гидроксилирование, образование нитрозаминов и нитротирозина.

На рис. 4-23 представлены некоторые типы рецепторов, участвующих в фагоцитозе и апоптозе.



Скавенджер-
  • 5. Гуморальные факторы врожденного иммунитета (белки системы комплемента, белки острой фазы, белки теплового шока, цитокины, антимикробные пептиды и др.)
  • 6. Цитокиновая сеть. Классификация и функция цитокинов.
  • 7. Эндоцитозные, сигнальные и растворимые рецепторы врожденного иммунитета.
  • 8. Секреторные рецепторы врожденного иммунитета.
  • 9. Система комплемента
  • 10. Роль белков теплового шока и острой фазы.
  • 11. Характеристика антимикробных пептидов и их продуцентов.
  • 12. Интерфероны, природа. Способы получения и применения.
  • 13. Роль и. И. Мечникова в формировании учения об иммуните­те. Неспецифические факторы защиты организма.
  • 14. Клеточные факторы врожденного иммунитета (макрофаги, нейтрофилы, естесственные киллеры, дендритные клетки, тучные клетки, базофилы, nk и др.).
  • 15. Фагоцитоз (стадии фагоцитоза, кислородный взрыв и др.)
  • 16. Функции естественных киллеров.
  • 17. Мембранные и цитозольные рецепторы врожденного иммунитета (tlr, nlr, rig). См. Ответ 7.
  • 18. Классификация и характеристика дендритных клеток.
  • 21. Антигены микробов и клеток человека (cd, mhc). Гаптены
  • 22. Характеристика Th1, Th2, Th17 и Treg-лимфоцитов.
  • 23. Иммунокомпетентные клетки; t- и в-лимфоциты, антигенпрезентирующие клетки.
  • 25. Презентация антигена. Кооперация, основные принципы дифференцировки т- и в-лимфоцитов.
  • 26. Формы иммуного ответа. Регуляция иммунного ответа.
  • 27)Теории иммунитета. Генетика формирования т и в-клеточных рецепторов.
  • 28) Иммунологическая толерантность,механизмы
  • 29)Клеточный иммунный ответ (цитотоксический и воспалительный иммунный ответ, роль цитокинов, т-хелперов и макрофагов)
  • 30)Гуморальный иммунный ответ (роль цитокинов, Th-2лимфоцитов и в-лимфоцитов).
  • 31) Антитела. Классы, структура и функции иммуноглобулинов.
  • 32) Антигенные свойства иммуноглобулинов, изотипы, аллотипы, идиотипы. Полные и неполные антитела.
  • 33) Моноклональные антитела.Получение(гибридомная технология) и применение.
  • 34) Генетика антителообразования.
  • 35) Иммунологическая память. Первичный и вторичный ответ.
  • 36) Мех-мы противоинфекционного (противобактериального и противовирусного) иммунитета
  • 37) Мех-мы противогельминтного, противоопухолевого и трансплантационного иммунитета.
  • 38)Гиперчувствительность немедленного типа. Мех-мы возникновения,клиническая значимость.
  • 39) Анафилактический шок и сывороточная болезнь. Причины возникновения.Механизм.Их предупреждение.Аллергоспецифическая иммунотерапия.
  • 40. Механизм гиперчувствительности замедленного типа. Клинико-диагностическое значение
  • 44. Оценка иммунного статуса: основные показатели и методы их определения.
  • 45. Механизмы развития аутоиммуных реакций.
  • 46. Практическое использование серологических реакций.
  • 47. Иммунологические реакции в диагностике инфекционных и неинфекционных заболеваний.
  • 50. Реакция пассивной гемагглютинации. Компоненты. Применение.
  • 51. Реакция коагглютинации. Механизм, компоненты. Применение.
  • 53. Реакция преципитации
  • 54. Реакции с использованием меченых антител или антигенов
  • 55. Реакция связывания комплемента
  • 56. Реакция нейтрализации
  • 57. Реакция иммунофлюоресценции (риф,методКунса)
  • 58. Иммуноферментный метод или анализ
  • 59. Иммунная электронная микроскопия
  • 60. Проточная цитометрия
  • 61. Серологические реакции, используемые для диагнос­тики вирусных инфекций.
  • 62. Диагностикумы. Получение, применение.
  • 63. Моноклональные антитела. Получение, применение.
  • 64 Методы приготовления и применения агглютинирую­щих, адсорбированных сывороток.
  • 65 Вакцины
  • 4.2.5.1. Иммунные сыворотки и иммуноглобулины
  • 14. Клеточные факторы врожденного иммунитета (макрофаги, нейтрофилы, естесственные киллеры, дендритные клетки, тучные клетки, базофилы, nk и др.).

    Нейтрофилы и макрофаги.

    Способностью к эндоцитозу (поглощению частиц с образованием внутриклеточной вакуоли) обладают все эукариотические клетки. Именно таким образом внутрь клеток проникают многие патогенные микроорганизмы. Однако в большинстве инфицированных клеток отсутствуют механизмы (либо они слабы), обеспечивающие деструкцию патогена.

    Нейтрофилы и мононуклеарные фагоциты имеют общее миелоидное происхождение из стволовой кроветворной клетки. Однако эти клетки различаются рядом свойств.

    Нейтрофилы - наиболее многочисленная и подвижная популяция фагоцитов, созревание которых начинается и заканчивается в костном мозгу. Около 70% всех нейтрофилов сохраняется в виде резерва в костно-мозговых депо, откуда они под влиянием соответствующих стимулов (провоспалительных цитокинов, продуктов микробного происхождения, С5а-компонента комплемента, колониестимулирующих факторов, кортикостероидов, катехоламинов) могут экстренно перемещаться через кровь в очаг тканевой деструкции и участвовать в развитии острого воспалительного ответа. Нейтрофилы - это «отряд быстрого реагирования» в системе антимикробной защиты.

    Нейтрофилы - короткоживущие клетки, продолжительность их жизни около 15 сут. Из костного мозга они выходят в кровоток уже зрелыми клетками, утратившими способность к дифференцированию и пролиферации. Из крови нейтрофилы перемещаются в ткани, в которых они либо гибнут, либо выходят на поверхность слизистых оболочек, где и заканчивают свой жизненный цикл.

    Моноциты, в отличие от нейтрофилов, - незрелые клетки, которые, попадая в кровяное русло и далее в ткани, созревают в тканевые макрофаги (плевральные и перитонеальные, купферовские клетки печени, альвеолярные, интердигитальные клетки лимфатических узлов, костного мозга, остеокласты, микроглиоциты, мезангиальные клетки почек, сертолиевы клетки яичек, клетки Лангерганса и Гринстейна кожи). Продолжительность жизни мононуклеарных фагоцитов от 40 до 60 сут.

    Макрофаги - не очень быстрые клетки, но они рассеяны во всех тканях, и, в отличие от нейтрофилов, им нет необходимости в столь срочной мобилизации. Если продолжить аналогию с нейтрофилами, то макрофаги в системе врожденного иммунитета - это «войска специального назначения».

    Важной особенностью нейтрофилов и макрофагов является наличие в их цитоплазме большого количества лизосом. Нейтрофилы и макрофаги чутко реагируют на любые изменения гомеостаза. Для этой цели они оснащены богатым арсеналом рецепторов, располагающихся на их цитоплазматической мембране.

    Основной функцией нейтрофилов и макрофагов является фагоцитоз.

    Не все микроорганизмы чувствительны к бактерицидным системам фагоцитов. Гонококки, стрептококки, микобактерии и другие выживают после контакта с фагоцитами, такой фагоцитоз называется незавершенным.

    Фагоциты, помимо фагоцитоза (эндоцитоза), могут осуществлять свои цитотоксические реакции путем экзоцитоза - выделения своих гранул наружу (дегрануляция) - таким образом фагоциты осуществляют внеклеточный киллинг. Нейтрофилы, в отличие от макрофагов, способны образовывать внеклеточные бактерицидные ловушки - в процессе активации клетка выбрасывает наружу нити ДНК, в которых располагаются гранулы с бактерицидными ферментами. Благодаря липкости ДНК бактерии приклеиваются к ловушкам и под действием фермента погибают.

    Нейтрофилы эффективны при инфекциях, вызванных внеклеточными патогенами (гноеродные кокки, энтеробактерии и др.), индуцирующими развитие острого воспалительного ответа. При таких инфекциях эффективна кооперация нейтрофил-комплемент-антитело. Макрофаги защищают от внутриклеточных патогенов (микобактерии, риккетсии, хламидии и др.), вызывающих развитие хронического гранулематозного воспаления, где главную роль играет кооперация макрофаг-Т- лимфоцит.

    Помимо участия в антимикробной защите, фагоциты участвуют в удалении из организма отмирающих, старых клеток и продуктов их распада, неорганических частиц (уголь, минеральная пыль и др.). Фагоциты (особенно макрофаги) являются антигенпредставляющими, они обладают секреторной функцией, синтезируют и выделяют наружу широкий спектр биологически активных соединений: цитокины (интерлейкины-1, 6, 8, 12, фактор некроза опухоли), простагландины, лейкотриены, интерфероны α и γ. Благодаря этим медиаторам фагоциты активно участвуют в поддержании гомеостаза, в процессах воспаления, в адаптивном иммунном ответе, регенерации.

    Эозинофилы относятся к полиморфно-ядерным лейкоцитам. Они отличаются от нейтрофилов тем, что обладают слабой фагоцитарной активностью. Эозинофилы поглощают некоторые бактерии, но внутриклеточный киллинг у них менее эффективен, чем у нейтрофилов.

    Естественные киллеры. Естественные киллеры - большие лимфоцитоподобные клетки, которые происходят из лимфоидных предшественников. Они содержатся в крови, тканях, особенно их много в печени, слизистой оболочке репродуктивной системы женщин, селезенке. Естественные киллеры, как и фагоциты, содержат лизосомы, но фагоцитарной активностью не обладают.