Биохимические методы исследования. Методы генетики Примеры генных заболеваний определяемых биохимическим методом

Для генетических исследований человек является неудобным объектом, так как у человека: невозможно экспериментальное скрещивание; большое количество хромосом; поздно наступает половая зрелость; малое число потомков в каждой семье; невозможно уравнивание условий жизни для потомства.

В генетике человека используется ряд методов исследования.

Генеалогический метод

Использование этого метода возможно в том случае, когда известны прямые родственники — предки обладателя наследственного признака (пробанда ) по материнской и отцовской линиям в ряду поколений или потомки пробанда также в нескольких поколениях. При составлении родословных в генетике используется определенная система обозначений. После составления родословной проводится ее анализ с целью установления характера наследования изучаемого признака.

Условные обозначения, принятые при составлении родословных:
1 — мужчина; 2 — женщина; 3 — пол не выяснен; 4 — обладатель изучаемого признака; 5 — гетерозиготный носитель изучаемого рецессивного гена; 6 — брак; 7 — брак мужчины с двумя женщинами; 8 — родственный брак; 9 — родители, дети и порядок их рождения; 10 — дизиготные близнецы; 11 — монозиготные близнецы.

Благодаря генеалогическому методу были определены типы наследования многих признаков у человека. Так, по аутосомно-доминантному типу наследуются полидактилия (увеличенное количество пальцев), возможность свертывать язык в трубочку, брахидактилия (короткопалость, обусловленная отсутствием двух фаланг на пальцах), веснушки, раннее облысение, сросшиеся пальцы, заячья губа, волчья пасть, катаракта глаз, хрупкость костей и многие другие. Альбинизм, рыжие волосы, подверженность полиомиелиту, сахарный диабет, врожденная глухота и другие признаки наследуются как аутосомно-рецессивные.

Доминантный признак — способность свертывать язык в трубочку (1) и его рецессивный аллель — отсутствие этой способности (2).
3 — родословная по полидактилии (аутосомно-доминантное наследование).

Целый ряд признаков наследуется сцепленно с полом: Х -сцепленное наследование — гемофилия, дальтонизм; Y -сцепленное — гипертрихоз края ушной раковины, перепончатость пальцев ног. Имеется ряд генов, локализованных в гомологичных участках Х - и Y -хромосом, например общая цветовая слепота.

Использование генеалогического метода показало, что при родственном браке, по сравнению с неродственным, значительно возрастает вероятность появления уродств, мертворождений, ранней смертности в потомстве. В родственных браках рецессивные гены чаще переходят в гомозиготное состояние, в результате развиваются те или иные аномалии. Примером этого является наследование гемофилии в царских домах Европы.

— гемофилик; — женщина-носитель.

Близнецовый метод

1 — монозиготные близ-нецы; 2 — дизигот-ные близ-нецы.

Близнецами называют одновременно родившихся детей. Они бывают монозиготными (однояйцевыми) и дизиготными (разнояйцевыми).

Монозиготные близнецы развиваются из одной зиготы (1), которая на стадии дробления разделилась на две (или более) части. Поэтому такие близнецы генетически идентичны и всегда одного пола. Монозиготные близнецы характеризуются большой степенью сходства (конкордантностью ) по многим признакам.

Дизиготные близнецы развиваются из двух или более одновременно овулировавших и оплодотворенных разными сперматозоидами яйцеклеток (2). Поэтому они имеют различные генотипы и могут быть как одного, так и разного пола. В отличие от монозиготных, дизиготные близнецы характеризуются дискордантностью — несходством по многим признакам. Данные о конкордантности близнецов по некоторым признакам приведены в таблице.

Признаки Конкордантность, %
Монозиготные близнецы Дизиготные близнецы
Нормальные
Группа крови (АВ0) 100 46
Цвет глаз 99,5 28
Цвет волос 97 23
Патологические
Косолапость 32 3
«Заячья губа» 33 5
Бронхиальная астма 19 4,8
Корь 98 94
Туберкулез 37 15
Эпилепсия 67 3
Шизофрения 70 13

Как видно из таблицы, степень конкордантности монозиготных близнецов по всем приведенным признакам значительно выше, чем у дизиготных, однако она не является абсолютной. Как правило, дискордантность монозиготных близнецов возникает в результате нарушений внутриутробного развития одного из них или под влиянием внешней среды, если она была разной.

Благодаря близнецовому методу, была выяснена наследственная предрасположенность человека к ряду заболеваний: шизофрении, эпилепсии, сахарному диабету и другим.

Наблюдения за монозиготными близнецами дают материал для выяснения роли наследственности и среды в развитии признаков. Причем под внешней средой понимают не только физические факторы среды, но и социальные условия.

Цитогенетический метод

Основан на изучении хромосом человека в норме и при патологии. В норме кариотип человека включает 46 хромосом — 22 пары аутосом и две половые хромосомы. Использование данного метода позволило выявить группу болезней, связанных либо с изменением числа хромосом, либо с изменениями их структуры. Такие болезни получили название хромосомных .

Материалом для кариотипического анализа чаще всего являются лимфоциты крови. Кровь берется у взрослых из вены, у новорожденных — из пальца, мочки уха или пятки. Лимфоциты культивируются в особой питательной среде, в состав которой, в частности, добавлены вещества, «заставляющие» лимфоциты интенсивно делиться митозом. Через некоторое время в культуру клеток добавляют колхицин. Колхицин останавливает митоз на уровне метафазы. Именно во время метафазы хромосомы являются наиболее конденсированными. Далее клетки переносятся на предметные стекла, сушатся и окрашиваются различными красителями. Окраска может быть а) рутинной (хромосомы окрашиваются равномерно), б) дифференциальной (хромосомы приобретают поперечную исчерченность, причем каждая хромосома имеет индивидуальный рисунок). Рутинная окраска позволяет выявить геномные мутации, определить групповую принадлежность хромосомы, узнать, в какой группе изменилось число хромосом. Дифференциальная окраска позволяет выявить хромосомные мутации, определить хромосому до номера, выяснить вид хромосомной мутации.

В тех случаях, когда необходимо провести кариотипический анализ плода, для культивирования берутся клетки амниотической (околоплодной) жидкости — смесь фибробластоподобных и эпителиальных клеток.

К числу хромосомных заболеваний относятся: синдром Клайнфельтера, синдром Тернера-Шерешевского, синдром Дауна, синдром Патау, синдром Эдвардса и другие.

Больные с синдромом Клайнфельтера (47, ХХY ) всегда мужчины. Они характеризуются недоразвитием половых желез, дегенерацией семенных канальцев, часто умственной отсталостью, высоким ростом (за счет непропорционально длинных ног).

Синдром Тернера-Шерешевского (45, Х0 ) наблюдается у женщин. Он проявляется в замедлении полового созревания, недоразвитии половых желез, аменорее (отсутствии менструаций), бесплодии. Женщины с синдромом Тернера-Шерешевского имеют малый рост, тело диспропорционально — более развита верхняя часть тела, плечи широкие, таз узкий — нижние конечности укорочены, шея короткая со складками, «монголоидный» разрез глаз и ряд других признаков.

Синдром Дауна — одна из самых часто встречающихся хромосомных болезней. Она развивается в результате трисомии по 21 хромосоме (47; 21, 21, 21). Болезнь легко диагностируется, так как имеет ряд характерных признаков: укороченные конечности, маленький череп, плоское, широкое переносье, узкие глазные щели с косым разрезом, наличие складки верхнего века, психическая отсталость. Часто наблюдаются и нарушения строения внутренних органов.

Хромосомные болезни возникают и в результате изменения самих хромосом. Так, делеция р -плеча аутосомы №5 приводит к развитию синдрома «крик кошки». У детей с этим синдромом нарушается строение гортани, и они в раннем детстве имеют своеобразный «мяукающий» тембр голоса. Кроме того, наблюдается отсталость психомоторного развития и слабоумие.

Чаще всего хромосомные болезни являются результатом мутаций, произошедших в половых клетках одного из родителей.

Биохимический метод

Позволяет обнаружить нарушения в обмене веществ, вызванные изменением генов и, как следствие, изменением активности различных ферментов. Наследственные болезни обмена веществ подразделяются на болезни углеводного обмена (сахарный диабет), обмена аминокислот, липидов, минералов и др.

Фенилкетонурия относится к болезням аминокислотного обмена. Блокируется превращение незаменимой аминокислоты фенилаланин в тирозин, при этом фенилаланин превращается в фенилпировиноградную кислоту, которая выводится с мочой. Заболевание приводит к быстрому развитию слабоумия у детей. Ранняя диагностика и диета позволяют приостановить развитие заболевания.

Популяционно-статистический метод

Это метод изучения распространения наследственных признаков (наследственных заболеваний) в популяциях. Существенным моментом при использовании этого метода является статистическая обработка получаемых данных. Под популяцией понимают совокупность особей одного вида, длительное время обитающих на определенной территории, свободно скрещивающихся друг с другом, имеющих общее происхождение, определенную генетическую структуру и в той или иной степени изолированных от других таких совокупностей особей данного вида. Популяция является не только формой существования вида, но и единицей эволюции, поскольку в основе микроэволюционных процессов, завершающихся образованием вида, лежат генетические преобразования в популяциях.

Изучением генетической структуры популяций занимается особый раздел генетики — популяционная генетика . У человека выделяют три типа популяций: 1) панмиктические, 2) демы, 3) изоляты, которые отличаются друг от друга численностью, частотой внутригрупповых браков, долей иммигрантов, приростом населения. Население крупного города соответствует панмиктической популяции. В генетическую характеристику любой популяции входят следующие показатели: 1) генофонд (совокупность генотипов всех особей популяции), 2) частоты генов, 3) частоты генотипов, 4) частоты фенотипов, система браков, 5) факторы, изменяющие частоты генов.

Для выяснения частот встречаемости тех или иных генов и генотипов используется закон Харди-Вайнберга .

Закон Харди-Вайнберга

В идеальной популяции из поколения в поколение сохраняется строго определенное соотношение частот доминантных и рецессивных генов (1), а также соотношение частот генотипических классов особей (2).

p + q = 1, (1)
р 2 + 2pq + q 2 = 1, (2)

где p — частота встречаемости доминантного гена А ; q — частота встречаемости рецессивного гена а ; р 2 — частота встречаемости гомозигот по доминанте АА ; 2pq — частота встречаемости гетерозигот Аа ; q 2 — частота встречаемости гомозигот по рецессиву аа .

Идеальной популяцией является достаточно большая, панмиктическая (панмиксия — свободное скрещивание) популяция, в которой отсутствуют мутационный процесс, естественный отбор и другие факторы, нарушающие равновесие генов. Понятно, что идеальных популяций в природе не существует, в реальных популяциях закон Харди-Вайнберга используется с поправками.

Закон Харди-Вайнберга, в частности, используется для примерного подсчета носителей рецессивных генов наследственных заболеваний. Например, известно, что в данной популяции фенилкетонурия встречается с частотой 1:10000. Фенилкетонурия наследуется по аутосомно-рецессивному типу, следовательно, больные фенилкетонурией имеют генотип аа , то есть q 2 = 0,0001. Отсюда: q = 0,01; p = 1 - 0,01 = 0,99. Носители рецессивного гена имеют генотип Аа , то есть являются гетерозиготами. Частота встречаемости гетерозигот (2pq ) составляет 2 · 0,99 · 0,01 ≈ 0,02. Вывод: в данной популяции около 2% населения — носители гена фенилкетонурии. Заодно можно подсчитать частоту встречаемости гомозигот по доминанте (АА ): p 2 = 0,992, чуть меньше 98%.

Изменение равновесия генотипов и аллелей в панмиктической популяции происходит под влиянием постоянно действующих факторов, к которым относятся: мутационный процесс, популяционные волны, изоляция, естественный отбор, дрейф генов, эмиграция, иммиграция, инбридинг. Именно благодаря этим явлениям возникает элементарное эволюционное явление — изменение генетического состава популяции, являющееся начальным этапом процесса видообразования.

Генетика человека — одна из наиболее интенсивно развивающихся отраслей науки. Она является теоретической основой медицины, раскрывает биологические основы наследственных заболеваний. Знание генетической природы заболеваний позволяет вовремя поставить точный диагноз и осуществить нужное лечение.

    Перейти к лекции №21 «Изменчивость»

В самостоятельную науку биологическая химия выделилась почти 100 лет назад, но многие биохимические процессы известны людям с давних времен и использовались в различных областях производства, сначала кустарного, а в последствии и промышленного масштаба. Например, на биохимических реакциях основано хлебопечение, сыроварение, изготовление вин, выделка кожи.
Сыроварением и изготовлением кисломолочных продуктов люди занимались еще до нашей эры, об этом упоминается даже в поэмах Пэмера. В процессе приготовления кисломолочных продуктов большую роль играют молочнокислые бактерии.
Использование лекарственных растений для лечения болезней привело к поиску действующего вещества и заставило задуматься о том, что с ним происходит в организме человека. Употребление плодов, зелени, изготовление растительных красок также привлекло интерес к химическому составу растений. Многие лекарственные вещества различного происхождения описаны в труде великого арабского врачевателя Авиценны «Канон врачебной науки».
Известный итальянский художник Леонардо да Винчи проводил различные опыты и сделал заключение о том, что живые организмы могут существовать только в той атмосфере, в которой может появиться пламя. Теперь уже всем известно, что почти всем жи4
вым организмам необходим кислород, содержащийся в атмосферном воздухе и обеспечивающий процесс горения. В конце XVIII в. было открыто значение дыхания и объяснена роль кислорода для живого организма.
Изучение химического состава живых организмов позволило английскому врачу и химику У. Прауту в 1827 г. разделить молекулы на белки, жиры и углеводы.
Химический состав организма человека вызывал большой интерес в научном мире. Немецкий химик Ф. Велер в 1828 г. впервые получил такое органическое вещество, как мочевина, сначала из аммиака и циановой кислоты, а затем из аммиака и углекислого газа. В 1882 г. ученый И.Я. Горбачевский (Украина) получил мочевую кислоту из глицина, а в дальнейших работах выявил процесс образования мочевой кислоты в живых организмах: мочевина и мочевая кислота образуются в результате превращения белков в организме, и их уровень в крови является важным показателем состояния белкового обмена. И. Я. Горбачевский известен и другими исследованиями в области биохимии (получение метилмочевой кислоты, креатина, открытие ксантиноксидазы). Именно он доказал то, что белки состоят из аминокислот, разработал способ определения азота в моче и других биологических материалах.
В 1854 г. французский химик П. Бертло получил в ходе лабораторных опытов жиры, а в 1861 г. русский химик А. М. Бутлеров высказал теорию строения органических соединений. Изучением микроорганизмов и вызываемого ими брожения занимался французский микробиолог Л. Пастер. Брожение - это расщепление углеводов под воздействием ферментов, происходящее с участием кислорода или без него и приводящее к образованию энергии, которую микроорганизмы используют для своей жизнедеятельности.
В организме человека брожение осуществляется в кишечнике населяющими его микроорганизмами, под воздействием выделяемых ими ферментов. Изучением брожения занимался и немецкий химик Э. Бухнер, который доказал, что процесс расщепление сахара имеет более химическую природу, чем биологическую, так как происходит с участием не только дрожжей (живых грибков), но и экстракта из них.
Большой вклад в изучение белков внес немецкий химик Э. Фишер, определивший строение и свойства большинства аминокислот. Также он установил химическую связь между аминокислотами в белках, что явилось основой пептидной теории строения белков. В 1926 г. американский биохимик Д. Самнер получил уреазу (фермент) и доказал, что он является белком. Дальнейшее изучение ферментов привело к открытию строения витаминов и определило превращение их в организме. Были изучены гликолиз (бескислородное расщепление углеводов) и цикл трикарбоновых кислот (циклические реакции, в ходе которых образуются вещества с большим запасом энергии). Открытие нуклеиновых кислот в составе белков и модели строения ДНК стало прорывом для биологии и медицины (биохимии, генетики). За это в 1953 г. английский врач и биолог Ф. Крик и американский биолог Д. Уотсон были удостоены Нобелевской премии.
Все эти открытия и достижения, а также дальнейшие биохимические исследования позволили описать обмен веществ в организме человека. При различных патологических состояниях происходят изменения химического состава в клетках, тканях, биологических жидкостях и выделениях. Наиболее часто биохимическому анализу подвергают кровь, мочу, кал, слюну, ликвор, желчь и желудочный сок. Реже исследуют химический состав красного костного мозга, околоплодной жидкости, пота, рвотных масс, волос, ногтей и спермы.
Химический состав биологического материала может изменяться как количественно (увеличение или понижение содержания каких-либо веществ, нарушение соотношения между ними), так и качественно (выявление отсутствующих или не определяющихся в норме веществ). В связи с этим биохимический анализ в некоторых случаях проводят прицельно, определяя уровень вещества в исследуемом материале или выявляя только его присутствие.
Многие наследственные заболевания связаны с нарушением обмена веществ. Часто это вызвано генетически обусловленным дефицитом каких-либо ферментов, в таком случае биохимические исследования помогают поставить точный диагноз. Иногда для этого подвергают анализу и кусочки тканей внутренних органов.
Биохимические исследования позволяют выявить некоторые нарушения обмена веществ уже в период внутриутробного развития или сразу после рождения ребенка, при этом возможно раннее начало лечения наследственных заболеваний, что дает возможность нормализовать состояние плода или ребенка, наилучшим образом обеспечить условия для его развития в соответствии с возрастом.
С помощью распространенных биохимических анализов можно выявить наличие нарушений обмена веществ, а для постановки точного диагноза проводят более детальные исследования. Многие биохимические анализы, позволяющие выявить наследственные нарушения обмена веществ, угрожающие жизни или развитию детей, в настоящее время проводят массово в форме скрининг-тестов. Например, всех новорожденных в роддоме обследуют на фенилкетонурию. Кроме того, с помощью биохимических тестов выявляют такие за
болевания, как энзимопатии, гликогенозы, муковисцидоз, адреногенитальный синдром. Исследованию в таких случаях подвергают наиболее доступный материал от больного (кровь и мочу).
После скринингового обследования делают уточняющие биохимические анализы, определяют количество вещества, свидетельствующего о заболевании, в единице исследуемого материала и следят за его уровнем в организме в дальнейшем.
Современные биохимические лаборатории оснащены компьютерами и анализаторами, которые делают возможным проводить одновременно большое число исследований с высокой точностью результатов и их расшифровкой. Биохимические анализы выполняют на основе таких методов, как хроматография, электрофорез и центрифугирование.

Хроматография

Хроматография - это метод установления химического состава смеси, основанный на определенном распределении веществ, находящихся в разном агрегатном состоянии (газ, жидкость, твердые частицы) между двумя фазами (подвижной или неподвижной). К подвижной фазе относятся газы и жидкости, а к неподвижной - твердые вещества. В определенных условиях вещества в смеси начинают распределяться по фазам: газы перемещаются вверх, твердые частицы осаждаются, между ними скапливается слой жидкости, некоторые жидкости тоже могут расслаиваться. Вещества подвижной фазы перемещаются с различной скоростью, что тоже позволяет судить о составе смеси. Распределяясь в анализаторе по фазам, компоненты смеси образуют цветовой столб, при этом для каждого вещества существуют свои цветовые характеристики.
Основоположник метода - русский биолог М. С. Цвет, который, пропуская смеси красящих веществ растительного происхождения через бесцветное впитывающее вещество, обнаружил, что оно окрашивается слоями с различными цветовыми характеристиками. Такой цветовой столбик был назван хромограммой.
В настоящее время существуют множество видов хроматографии. Например, адсорбционная хроматография основана на использовании адсорбентов (твердых впитывающих веществ). Разные вещества впитываются адсорбентами по-разному, именно выявление этих особенностей и позволяет оценить качественный состав исследуемой смеси. Распределительная хроматография основана на разной растворимости веществ, находящихся в разной фазе.
Ионообменная хроматография основана на проникновении ионов подвижной фазы (исследуемой жидкости) в вещество неподвижной фазы, которое происходит за счет электростатического взаимодействия между ионами этих веществ. Способность твердых веществ выпадать в осадок позволяет проводить осадочную хроматографию.
Существует еще эксклюзионная хроматография, при которой распределение веществ обеспечивается за счет разной проницаемости молекул жидкой фазы в гель (неподвижную фазу).

Электрофорез

Биохимические анализы, основанные на принципе электрофореза, в медицинской практике используют очень широко, так как одновременно информативны и экономичны. Метод электрофореза, разработанный в 1937 г. шведским биохимиком А. Тиселиусом, позволяет разделять макромолекулы по фракциям и основан на свойствах макромолекул при растворении в воде приобретать электрический заряд. При воздействии на раствор электрического поля молекулы притягиваются к электроду с противоположным зарядом.
Скорость перемещения молекул зависит от их размера и электрического заряда. Так, молекулы белка амфотерны, т. е. имеют положительный заряд на одном конце и отрицательный на другом, поэтому их скорость и направление перемещения зависят от среды (кислая или щелочная). На заряд белковых молекул в средах с одинаковой кислотностью влияют аминокислоты, входящие в их состав. При распаде белковой молекулы образуются цепи аминокислот с разным электрическим зарядом, которые под воздействием электрического поля притягиваются к противоположно заряженному электроду и таким образом разделяются.
Гель - это смесь нескольких веществ, обладающая свойствами твердых тел (сохраняет форму), но очень пластичных (деформируется). Одно вещество при этом всегда состоит из крупных молекул, образующих сетку (каркас), заполненную молекулами малого размера второго вещества.
Для упрощения разделения веществ электрофорез проводят на фильтровальной бумаге, целлюлозе, гелях и агарозе, в этом случае гели выступают в качестве ионного фильтра: мелкие ионы проникают в поры геля, а крупные - нет, что дает дополнительную информацию для исследования.
Наиболее часто электрофорез применяют для разделения белков по фракциям (все белки крови подразделяются на альбумины и несколько видов глобулинов). При многих заболеваниях изменяется не только общее количество белка в крови, но и соотношение его различных фракций. Результаты таких исследований важны для диагностики заболеваний печени, почек, злокачественных опухолей, нарушений иммунитета, инфекционных заболеваний и наследственных болезней.

Центрифугирование

С помощью центрифуги можно разделить жидкие смеси с компонентами разной удельной плотности, так как при очень быстром вращении смеси расслаиваются и частицы разных компонентов в центробежном поле осаждаются с разной скоростью, которая зависит от их
размера и плотности.
Например, при центрифугировании крови в пробирке образуются несколько слоев: верхний желтый слой - плазма, нижний темный слой - клетки крови (эритроциты, лейкоциты и тромбоциты). При этом у границы жидкости можно заметить тонкий сероватый слой тромбоцитов.
Вещества, имеющие диагностическое значение, могут находиться в клетках крови или в плазме, некоторые химические элементы и вещества определяются и там, и там, поэтому разделение крови по фракциям позволяет провести точную диагностику.
Центрифугированию можно подвергнуть любые неоднородные жидкие среды, при этом оно подразделяется на препаративное и аналитическое.
Препаративное центрифугирование
Проводят с целью получения определенных компонентов из биологического материала для дальнейшего биохимического анализа. Такими компонентами могут быть клетки, их органеллы (митохондрии, рибосомы, ядра и др.) и макромолекулы (белки, ДНК и др.). Этот вид подготовки материала к дальнейшему исследованию применяют более часто, чем последующий.
Аналитическое центрифугирование
Проводят для выявления характеристик однородного материала, например, макромолекул. Материал центрифугируют, вследствие чего под контролем оптических систем происходит осаждение частиц. При этом можно определить их однородность, молекулярную массу, структуру, так как форма и масса частиц оказывают влияние на скорость осаждения. Проводя расчеты по стандартным формулам, можно вычислить эти параметры и составить характеристики исследуемого материала.
  • 5 . Взаимодействие неаллельных генов, их виды.
  • 6 . Закономерности наследования признаков по г.Менделю. Менделирующие признаки у человека.
  • 7 . Типы наследования признаков, их характеристика. Экспрессивность и пенетрантность.
  • 8. Понятие "сцепление" генов. Х-сцепленное наследование признаков у человека.
  • Х-сцепленное наследование
  • 9. Наследование групп крови системы ab0 у человека
  • 10. Резус-фактор. Резус-конфликт. Резус - несовместимость.
  • Резус-несовместимость крови
  • 11. Современные методы генетических исследований.
  • 12. Хромосомные болезни. Их классификация, диагностика.
  • Все хромосомные болезни могут быть разделены на 3 большие группы:
  • 13. Генные болезни у человека. Их классификация, диагностика.
  • Классификация
  • 14. Цитогенетический метод при генетическом анализе наследственного аппарата человека
  • 15. Цитогенетическая и фенотипическая характеристика больных с синдромом Дауна. Диагностика.
  • 16. Цитогенетическая и фенотипическая характеристика больных с синдромом Шерешевского-Тернера. Диагностика. Синдром Шерешевского-Тернера (моносомия х-хромосомы).
  • 17. Цитогенетическая и фенотипическая характеристика больных с синдромом Клайнфельтера. Диагностика. Синдром Клайнфельтера - генетическое заболевание.
  • Симптомы синдрома Клайнфельтера
  • Диагностика синдрома Клайнфельтера
  • 18.Человеческие популяции, факторы их подразделённости. Генофонд популяций.
  • 19. Биологические факторы динамики генофонда популяций.
  • 20.Социально-демографические факторы динамики генофонда популяций.
  • 21.Генетический груз популяций, определение его величины по уравнению Харди -Вайнберга.
  • 22.Клинико-генеалогический метод, его использование при
  • 23.Биохимический метод, его сущность, возможности применения при медико-генетическом консультировании.
  • 24.Близнецовость у человека, критерии определения идентичности близнецов. Близнецовый метод в генетическом анализе.
  • 25. Дерматоглифический метод, его сущность и возможности использования при генетическом анализе.
  • 26.Молекулярно-генетический метод, его современные возможности и перспективы использования в медицине.
  • 27.Гибридологический анализ, его использование в генетических исследованиях.
  • 28. Половой диморфизм у человека, его генетическая и фенотипическая характеристика.
  • 29.Медико-генетическое консультирование, его задачи, организация. Медико-генетическое консультирование
  • 30. Инбридинг (случайный, неслучайный, тотальный) , его роль как фактор изменения генофонда популяции.
  • 31. Естественный отбор, определение его величины в человеческих популяция.
  • 32. Хромосомный мозаицизм, его формирование, фенотипическое проявление у человека. Фенокопии, их сущность.
  • 23.Биохимический метод, его сущность, возможности применения при медико-генетическом консультировании.

    Биохимические методы.

    Эти методы используются для диагностики болезней обмена веществ, причиной которых является изменение активности определенных ферментов. С помощью биохимических методов открыто около 500 молекулярных болезней, являющихся следствием проявления мутантных генов. При различных типах заболеваний удается либо определить сам аномальный белок-фермент, либо промежуточные продукты обмена. Эти методы отличаются большой трудоемкостью, требуют специального оборудования и потому не могут быть широко использованы для массовых популяционных исследований с целью раннего выявления больных с наследственной патологией обмена.

    В последние два десятилетия в разных странах разрабатываются и применяются для массовых исследований специальные программы.

    Первый этап такой программы состоит в том, чтобы среди большого количества обследуемых выделит предположительно больных, имеющих, какое-то наследственное отклонение от нормы. Такая программа называется просеивающей, или скриннинг-программой (англ. screening - просеивание). Для этого этапа обычно используется небольшое количество простых, доступных методик (экспресс-методов). Экспресс-методы основаны на простых качественных реакциях выявления продуктов обмена в моче, крови.

    На втором этапе проводится уточнение (подтверждение диагноза или отклонение при ложно-положительной реакции на первом этапе). Для этого используются точные хроматографические методы определения ферментов, аминокислот и т. п.

    Применяют также микробиологические тесты, они основаны на том, что некоторые штаммы бактерий могут расти только в средах, содержащих определенные аминокислоты, углеводы. Удалось получить штаммы по веществам, являющимся субстратамиили промежуточными метаболитами у больных при нарушении обмена. Если в крови или моче есть требуемое для роста вещество, то в чашке Петри вокруг фильтровальной бумаги, пропитанной одной из этих жидкостей, наблюдается активное размножение микробов, чего не бывает в случае анализа у здорового человека. Разрабатываются различные варианты микробиологических методов.

    Биохимические, иммунологические и другие параклинические методы не являются специфичными для генетической консультации, но применяются так же широко, как и при диагностике ненаследственных болезней. При наследственных болезнях часто возникает необходимость применять те же тесты не только у пациента, но и других членов семьи (составление биохимической или иммунологической "родословной")

    24.Близнецовость у человека, критерии определения идентичности близнецов. Близнецовый метод в генетическом анализе.

    Близнецы- дети одной матери, резвившиеся в течение одной беременности и появившиеся на свет в результате одних родов практически одновременно. Близнецы могут быть как однополые, так и разнополые.

    Выделяют два основных типа близнецов:

      монозиготные (гомозиготные);

      дизиготные (гетерозиготные).

    Монозиготные (однояйцовые, гомозиготные или идентичные) близнецы образуются из одной зиготы (одной яйцеклетки, оплодотворенной одним сперматозоидом), разделившейся на стадии дробления на две (или более) части. Они обладают одинаковыми генотипами. Монозиготные идентичные близнецы всегда одного пола и обладают очень большим портретным сходством.

    Дизиготные близнецы развиваются в том случае, если две яйцеклетки оплодотворены двумя сперматозоидами. Естественно, дизиготные близнецы имеют различные генотипы. Они сходны между собой не более, чем братья и сестры, так как имеют около 50 % идентичных генов.

    Общая частота рождения близнецов составляет примерно 1 %, из них около 1/3 приходится на монозиготных близнецов.

    Для подтверждения монозиготности близнецов, используют ряд подходов:

      сравнение по многим, главным образом, морфологическим признакам - пигментация глаз, волос и кожи, особенности волосяного покрова на голове и теле, а также форма волос, форма ушей, носа, губ и ногтей, пальцевые узоры (полисимптомный подход);

      сравнение по эритроцитарным антигенам – группы крови АВО, резус, MN и др., по белкам и сыворотки крови: все перечисленные маркеры относятсяк категории моногенных менделирующих признаков, а контролирующие их гены отличаются узкой нормой реакции (иммунологический подход);

      сравнение данных ЭКГ и ЭГ- электрокардиографии и энцефалограмм - близнецов (клинико-функциональный метод);

      трансплантационный тест, заключающийся в перекрестной пересадке кожи у близнецов (вариант иммунологического подхода, успешная перекрестная пересадка – наиболее достоверный критерий монозиготности).

    Близнецовый метод используется для выяснения наследственной обусловленности признаков и хорошо демонстрирует взаимоотношения между генотипом и внешней средой. С помощью этого метода удалось оценить значимость генетической предрасположенности к многим заболеваниям, пенетрантность, экспрессивность и условия проявления тех или иных видов патологии. Близнецовые данные оказываются полезными для количественной оценки степени генетической детерминированности отдельных признаков, в связи с чем, близнецовый метод можно считать одним из важных методов количественной генетики.

    Таким образом, близнецовый метод позволяет количественно оценить вклад наследственности (генотипа) и вклад окружающей среды в развитие изучаемого признака (болезни).

    Близнецовый метод включает следующие этапы:

    Этап 1. Подбор пар монозиготных и дизиготных близнецов.

    Подбирают по 100 пар близнецов, у которых хотя бы у одного из двух близнецов имеется изучаемый признак

    Этап 2. Вычисление степени сходства внутри каждой группы близнецов.

    Определяются отдельно для каждой группы

    Конкордантность(К) – наличие признака одновременно у обоих близнецов.

    Дискордантность(Д) – наличие признака только у одного близнеца из пары.

    Коэффициент наследуемости H

    Мз- монозиготные

    Дз- дизиготные

    Формула Хольцингера

    Н- коэффициент наследуемости

    Е- доля среды в формировании изучаемого признака

    Этап 3 Вычисление доли генотипа и доли среды в развитии изучаемого признака

    Если НЕ преобладает влияние наследственности

    Если НЕ определяющим фактором является средовой.

    Основной метод генетики - гибридологический (скрещивание определенных организмов и анализ их потомства, этот метод использовал Г.Мендель).


    Гибридологический метод не подходит для человека по морально-этическим соображениям, а так же из-за малого количества детей и позднего полового созревания. Поэтому для изучения генетики человека применяют косвенные методы.


    1) Генеалогический - изучение родословных. Позволяет определить закономерности наследования признаков, например:

    • если признак проявляется в каждом поколении, то он доминантный (праворукость)
    • если через поколение - рецессивный (голубой цвет глаз)
    • если чаще проявляется у одного пола - это признак, сцепленный с полом (гемофилия, дальтонизм)

    2) Близнецовый - сравнение однояйцевых близнецов, позволяет изучать модификационную изменчивость (определять воздействие генотипа и среды на развитие ребенка).


    Однояйцевые близнецы получаются, когда один зародыш на стадии 30-60 клеток делится на 2 части, и каждая часть вырастает в ребенка. Такие близнецы всегда одного пола, похожи друг на друга очень сильно (потому что у них совершенно одинаковый генотип). Отличия, которые возникают у таких близнецов в течение жизни, связаны с воздействием условий окружающей среды.


    Разнояйцевые близнецы (не изучаются в близнецовом методе) получаются, когда в половых путях матери одновременно оплодотворяются две яйцеклетки. Такие близнецы могут быть одного или разного пола, похожи друг на друга как обычные братья и сестры.


    3) Цитогенетический - изучение под микроскопом хромосомного набора - числа хромосом, особенностей их строения. Позволяет выявлять хромосомные болезни. Например, при синдроме Дауна имеется одна лишняя 21-ая хромосома.

    4) Биохимический - изучение химического состава организма. Позволяет узнать, являются ли пациенты гетерозиготами по патологическому гену. Например, гетерозиготы по гену фенилкетонурии не болеют, но в их крови можно обнаружить повышенное содержание фенилаланина.

    5) Популяционно-генетический - изучение доли различных генов в популяции. Основа на законе Харди-Вайнберга. Позволяет расчитать частоту нормальных и патологичнеских фенотипов.

    Выберите один, наиболее правильный вариант. С помощью какого метода выявляется влияние генотипа и среды на развитие ребенка
    1) генеалогического
    2) близнецового
    3) цитогенетического
    4) гибридологического

    Ответ


    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Близнецовый метод исследования используют
    1) цитологи
    2) зоологи
    3) генетики
    4) селекционеры
    5) биохимики

    Ответ


    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Генетики, используя генеалогический метод исследования, составляют
    1) генетическую карту хромосом
    2) схему скрещивания
    3) родословное древо
    4) схему предковых родителей и их родственные связи в ряде поколений
    5) вариационную кривую

    Ответ


    1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Генеалогический метод исследования используют для установления
    1) доминантного характера наследования признака
    2) последовательности этапов индивидуального развития
    3) причин хромосомных мутаций
    4) типа высшей нервной деятельности
    5) сцепленности признака с полом

    Ответ


    2. Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Генеалогический метод позволяет определить
    1) степень влияния среды на формирование фенотипа
    2) влияние воспитания на онтогенез человека
    3) тип наследования признака
    4) интенсивность мутационного процесса
    5) этапы эволюции органического мира

    Ответ


    3. Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Генеалогический метод используют для определения


    3) закономерностей наследования признаков
    4) числа мутаций
    5) наследственного характера признака

    Ответ


    4. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Генеалогический метод используют для
    1) изучения влияния воспитания на онтогенез человека
    2) получения генных и геномных мутаций
    3) изучения этапов эволюции органического мира
    4) выявления наследственных заболеваний в роду
    5) исследования наследственности и изменчивости человека

    Ответ


    5. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Генеалогический метод используют для определения
    1) степени влияния факторов среды на формирование признака
    2) характера наследования признака
    3) вероятности передачи признака в поколениях
    4) структуры хромосом и кариотипа
    5) частоты встречаемости патологичного гена в популяции

    Ответ


    Выберите один, наиболее правильный вариант. Основной метод изучения закономерностей наследования признаков
    1) генеалогический
    2) цитогенетический
    3) гибридологический
    4) близнецовый

    Ответ


    Выберите один, наиболее правильный вариант. Для определения характера влияния генотипа на формирование фенотипа у человека анализируется характер проявления признаков
    1) в одной семье
    2) в больших популяциях
    3) у идентичных близнецов
    4) у разнояйцовых близнецов

    Ответ


    Установите соответствие между характеристикой и методом: 1) цитогенетический, 2) генеалогический. Запишите цифры 1 и 2 в правильном порядке.
    А) исследуется родословная семьи
    Б) выявляется сцепление признака с полом
    В) изучается число хромосом на стадии метафазы митоза
    Г) устанавливается доминантный признак
    Д) определяется наличие геномных мутаций

    Ответ


    Выберите один, наиболее правильный вариант. Метод, позволяющий изучать влияние условий среды на развитие признаков
    1) гибридологический
    2) цитогенетический
    3) генеалогический
    4) близнецовый

    Ответ


    Выберите один, наиболее правильный вариант. Какой метод генетики используют для определения роли факторов среды в формировании фенотипа человека
    1) генеалогический
    2) биохимический
    3) палеонтологический
    4) близнецовый

    Ответ


    Выберите один, наиболее правильный вариант. Какой метод используют в генетике при изучении геномных мутаций
    1) близнецовый
    2) генеалогический
    3) биохимический
    4) цитогенетический

    Ответ


    1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Цитогенетический метод используют для определения
    1) степени влияния среды на формирование фенотипа
    2) наследования сцепленных с полом признаков
    3) кариотипа организма
    4) хромосомных аномалий
    5) возможности проявления признаков у потомков

    Ответ


    2. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Цитогенетический метод позволяет изучить у человека
    1) наследственные заболевания, связанные с геномными мутациями
    2) развитие признаков у близнецов
    3) особенности обмена веществ его организма
    4) его хромосомный набор
    5) родословную его семьи

    Ответ


    3. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Цитогенетический метод исследования генетики человека
    1) основан на составлении родословных человека
    2) используется для изучения характерна наследования признака
    3) заключается в микроскопическом исследовании структуры хромосом и их количества
    4) используется для выявления хромосомных и геномных мутаций
    5) помогает установить степень влияния среды на развитие признаков

    Ответ


    Все приведённые ниже методы исследования, кроме двух, используются для изучения наследственности и изменчивости человека. Определите эти два метода, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
    1) генеалогически
    2) гибридологический
    3) цитогенетический
    4) экспериментальный
    5) биохимический

    Ответ


    Выберите из текста три предложения, которые дают верную характеристику методам исследования генетики и наследственности человека. Запишите цифры, под которыми они указаны. (1) Генеалогический метод, используемый в генетике человека, основан на изучении родословного древа. (2) Благодаря генеалогическому методу был установлен характер наследования конкретных признаков. (3) Близнецовый метод позволяет прогнозировать рождение однояйцевых близнецов. (4) При использовании цитогенетического метода устанавливают наследование у человека групп крови. (5) Характер наследования гемофилии (плохой свёртываемости крови) был установлен путём анализа родословных как Х-сцепленный рецессивный ген. (6) Гибридологический метод позволяет изучить распространение болезней по природным зонам Земли.

    Ответ


    Ниже приведен перечень методов генетики. Все они, кроме двух, относятся к методам генетики человека. Найдите два термина, «выпадающих» из общего ряда, и запишите цифры, под которыми они указаны.
    1) близнецовый
    2) генеалогический
    3) цитогенетический
    4) гибридологический
    5) индивидуального отбора

    Ответ


    1. Выберите два верных варианта ответа из пяти и запишите цифры, под которыми они указаны. Биохимический метод исследования используется для:
    1) изучения кариотипа организма
    2) установления характера наследования признака
    3) диагностике сахарного диабета
    4) определения дефектов ферментов
    5) определения массы и плотности органоидов клетки

    Ответ


    2. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Биохимический метод исследования используется для
    1) определения степени влияния среды на развитие признаков
    2) изучения обмена веществ
    3) изучения кариотипа организма
    4) исследования хромосомных и геномных мутаций
    5) уточнения диагнозов сахарного диабета или фенилкетонурии

    Ответ


    1. Выберите три варианта. Сущность гибридологического метода заключается в
    1) скрещивании особей, различающихся по нескольким признакам
    2) изучении характера наследования альтернативных признаков
    3) использовании генетических карт
    4) применении массового отбора
    5) количественном учёте фенотипических признаков потомков
    6) подборе родителей по норме реакции признаков

    Ответ


    2. Выберите два верных ответа. К особенностям гибридологического метода относят
    1) подбор родительских пар с альтернативными признаками
    2) наличие хромосомных перестроек
    3) количественный учёт наследования каждого признака
    4) определение мутантных генов
    5) определение числа хромосом в соматических клетках

    Ответ


    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие методы научного исследования используются для диагностики сахарного диабета и выявления характера его наследования?
    1) биохимический
    2) цитогенетический
    3) близнецовый
    4) генеалогический
    5) исторический

    Ответ


    Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. В генетике человека используют методы
    1) цитогенетический
    2) генеалогический
    3) индивидуального отбора
    4) гибридологический
    5) полиплоидизации

    Ответ


    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Для изучения наследственных болезней человека исследуют клетки околоплодной жидкости методами
    1) цитогенетическим
    2) биохимическим
    3) гибридологическим
    4) физиологическим
    5) сравнительно-анатомическим

    Ответ


    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Популяционно-статистический метод исследования генетики человека используется для
    1) расчета частоты встречаемости нормальных и патологических генов
    2) изучения биохимических реакций и обмена веществ
    3) предсказания вероятности генетических аномалий
    4) определения степени влияния среды на развитие признаков
    5) изучения структуры генов, их количества и расположения в молекуле ДНК

    Ответ


    Установите соответствие между примерами и методами выявления мутаций: 1) биохимический, 2) цитогенетический. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
    А) утрата Х-хромосомы
    Б) образование бессмысленных триплетов
    В) появление дополнительной хромосомы
    Г) изменение структуры ДНК в пределах гена
    Д) изменение морфологии хромосомы
    Е) изменение числа хромосом в кариотипе

    Ответ


    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Близнецовый метод исследования генетики человека используется для
    1) изучения характера наследования признака
    2) определения степени влияния среды на развитие признаков
    3) предсказания вероятности рождения близнецов
    4) оценки генетической предрасположенности к различным заболеваниям
    5) расчета частоты встречаемости нормальных и патологических генов

    Ответ


    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. В генетике используют
    1) конвергентное сходство особей
    2) гибридологический анализ
    3) скрещивание особей
    4) искусственный мутагенез
    5) центрифугирование

    Ответ


    Проанализируйте таблицу «Методы изучения наследственности человека». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.
    1) установление характера наследования различных признаков
    2) микроскопическое исследование числа и структуры хромосом
    3) биохимический метод
    4) цитогенетический метод
    5) близнецовый метод
    6) изучение родственных связей между людьми
    7) изучение химического состава крови
    8) выявление нарушения обмена веществ

    Ответ

    © Д.В.Поздняков, 2009-2019

    Биохимические показатели (первичный белковый продукт гена, накопление патологических метаболитов внутри клетки и во внеклеточных жидкостях) лучше отражают сущность болезни, чем клинические симптомы, не только в диагностическом, но и в генетическом аспекте. Значимость биохимических методов повышалась по мере их совершенствования (электрофорез, хроматография, спектроскопия и др.) и описания наследственных болезней. В 80-х годах ХХ в. был выделен целый раздел - наследственные болезни обмена веществ, т.е. заболевания с различными биохимическими нарушениями.

    Биохимические методы направлены на определение биохимического фенотипа организма. Уровни, на которых оценивают фенотип, могут быть разными - от первичного продукта гена (полипептидной цепи) до конечных метаболитов в крови, моче или поте. Биохимические методы чрезвычайно многообразны, и их значение в диагностике наследственных болезней постоянно возрастает. Разработка молекулярно-генетических методов диагностики частично снизила интерес к биохимическим исследованиям, но вскоре стало ясно, что в большинстве случаев указанные методы дополняют друг друга, поскольку молекулярногенетически описывают генотип, а биохимически - фенотип.
    Болезнь в конечном счете - фенотип. В связи с этим, несмотря на сложность, а иногда и дороговизну биохимических методов, им принадлежит существенная роль в диагностике моногенных наследственных заболеваний. Современные высокоточные технологии (высокоэффективная жидкостная хроматография, хромато-масс-спектрометрия, газовая хроматография, тандемная спектрометрия) позволяют идентифицировать любые метаболиты, специфичные для конкретной наследственной болезни.

    На первый взгляд может показаться, что самый точный метод диагностики - определение мутации на уровне ДНК. Тем не менее это не всегда так. Реализация действия гена - сложный процесс, поэтому нормальная структура гена, а точнее - отсутствие мутации, не всегда служит полной гарантией нормального биохимического фенотипа.

    Принципы биохимической диагностики наследственных болезней менялись в процессе развития генетики человека и биохимии. Так, до 50-х годов XX в. диагностика была направлена на поиски специфичных для каждого заболевания метаболитов в моче (алкаптонурия, фенилкетонурия).
    С 50-х до 70-х годов упор в диагностике был сделан на обнаружение энзимопатий. Разумеется, поиски метаболитов в конечных реакциях при этом не исключались. Наконец, с 70-х годов главным объектом диагностики стали белки разных групп. К настоящему времени все они служат предметом биохимической диагностики.

    Оценка метаболитов в биологических жидкостях - необходимый этап диагностики аминоацидопатий, органических ацидурий, мукополисахаридозов, митохондриальных и пероксисомных болезней, дефектов метаболизма пуринов и пиримидинов и др. Для этих целей используют методы качественного химического анализа, спектрофотометрические способы количественной оценки соединений, а также различные виды хроматографии.

    Хроматографические методы анализа играют важнейшую роль в диагностике наследственных болезней обмена (НБО). Это обусловлено тем, что современный арсенал хроматографических технологий чрезвычайно широк и позволяет эффективно и информативно разделять сложные многокомпонентные смеси, к которым в том числе относят и биологический материал.
    Для количественного анализа маркеров-метаболитов НБО успешно применяют такие хроматографические методы, как газовая и высокоэффективная жидкостная хроматография (ВЭЖХ), а также хромато-масс-спектрометрия (ХМС). Газовая хроматография и ВЭЖХ - универсальные методы разделения сложных смесей соединений, отличающиеся высокой чувствительностью и воспроизводимостью. В обоих случаях разделение осуществляют в результате различного взаимодействия компонентов смеси с неподвижной и подвижной фазами хроматографической колонки. Для газовой хроматографии подвижной фазой служит газ-носитель, для ВЭЖХ - жидкость (элюент). Выход каждого соединения фиксирует детектор прибора, сигнал которого преобразуется в пики на хроматограмме. Каждый пик характеризуется временем удерживания и площадью. Следует отметить, что газовую хроматографию проводят, как правило, при высокотемпературном режиме, поэтому ограничением для ее применения считают термическую неустойчивость соединений. Для ВЭЖХ не существует подобных ограничений, так как в этом случае анализ проводят в мягких условиях.

    Масс-спектрометрия - аналитический метод, с помощью которого можно получать как качественную (структура), так и количественную (молекулярная масса или концентрация) информацию об анализируемых молекулах после их преобразования в ионы.
    Существенное отличие масс-спектрометрии от других физико-химических аналитических методов состоит в том, что в масс-спектрометре определяют непосредственно массу молекул и их фрагментов. Результаты представляют графически (так называемый масс-спектр). Иногда невозможно анализировать сложные многокомпонентные смеси молекул без их предварительного разделения. Это можно сделать либо хроматографически (жидкостная или газовая хроматография), либо использовать два последовательно соединенных массспектрометра (тандемная масс-спектрометрия - ТМС). ТМС позволяет охарактеризовать структуру, молекулярную массу и провести количественную оценку 3000 соединений одновременно. При этом для проведения анализа длительная подготовка проб не требуется (как, например, для газовой хроматографии), а время исследования занимает несколько секунд.

    ТМС - одно из перспективных направлений в развитии программ диагностики НБО, поскольку позволяет количественно и в микроколичествах биологического материала определять множество метаболитов. В настоящее время в некоторых странах ТМС применяют для массового скрининга новорожденных на наследственные болезни.

    В связи с многообразием биохимических методов, применяемых в лабораторной диагностике наследственных болезней, в их использовании должна быть определенная система. У пробанда или члена его семьи нереально исключить все наследственные болезни, которые могут попасть в поле зрения при обследовании пациента. Если применять максимально возможное число методов диагностики, то каждое обследование станет очень трудоемким и долгим. Исходную схему обследования строят на клинической картине болезни, генеалогических сведениях и биохимической стратегии, которые позволяют определить ход обследования на основе поэтапного исключения определенных классов наследственных болезней обмена (просеивающий метод).

    Необходимо подчеркнуть, что, в отличие от цитогенетических и молекулярногенетических исследований, биохимические методы многоступенчаты. Для их проведения требуется аппаратура разных классов. Материалом для биохимической диагностики могут быть моча, пот, плазма и сыворотка крови, форменные элементы крови, культуры клеток (фибробласты, лимфоциты) и биоптаты мышц. При использовании просеивающего метода в биохимической диагностике можно выделить два уровня: первичный и уточняющий. Каждый из них может быть по-разному «нагружен» реакциями в зависимости от возможностей лаборатории.

    Основная цель первичной диагностики заключается в том, чтобы обнаружить здоровых людей и отобрать пациентов для последующего уточнения диагноза. В программах первичной диагностики в качестве материала используют мочу и небольшое количество крови. Программы могут быть массовыми и селективными.

    Селективные диагностические программы предусматривают проверку биохимических аномалий обмена (моча, кровь) у пациентов с подозрением на генные наследственные болезни. Фактически они должны функционировать в каждой большой больнице. Показания для их применения достаточно широкие, а стоимость каждого анализа невысока.

    В селективных программах можно использовать простые качественные реакции (например, тест с хлоридом железа для диагностики фенилкетонурии или с динитрофенилгидразином для обнаружения кетокислот) или более точные методы, позволяющие обнаруживать большие группы отклонений. Газовую хроматографию применяют для диагностики НБО органических кислот и ряда аминоацидопатий. С помощью электрофореза гемоглобинов диагностируют заболевания из группы гемоглобинопатий.

    Нередко приходится углублять биохимический анализ от количественного определения метаболита до измерения активности фермента (использование нативных тканей или культивированных клеток), например, с помощью спектрофлюориметрии или спектрометрии (в зависимости от применяемого субстрата). Следует отметить, что определение активности ферментов при наследственных заболеваниях - не рутинная процедура, проводимая только в специализированных лабораториях. В современных условиях очень многие этапы биохимической диагностики выполняют автоматически, в частности с помощью аминоанализаторов.

    Селективные диагностические программы обеспечивают только предположительное обнаружение больных с НБО. Методы подтверждающей диагностики включают количественное определение метаболитов, исследование их кинетики, энзимо- и ДНК-диагностику.

    Показания для применения биохимических методов диагностики у новорожденных: нарушения сознания, судороги, нарушения ритма дыхания, мышечная гипотония, нарушения вскармливания, желтуха, специфический запах мочи и пота, метаболический ацидоз с дефицитом оснований и гипогликемия. У детей более старшего возраста биохимические методы используют во всех случаях подозрения на НБО (задержка физического и умственного развития, потеря приобретенных функций, увеличение размеров внутренних органов), а также при клинической картине, специфичной для определенного заболевания.

    Биохимические методы применяют для диагностики наследственных болезней и гетерозиготных состояний у взрослых (гепатолентикулярная дегенерация, недостаточность α1-антитрипсина, недостаточность глюкозо-6-фосфатдегидрогеназы и др.). При диагностике многих болезней биохимические методы заменяют молекулярно-генетическими в связи с их большей точностью или экономичностью. Принципиально важным считают правильное сочетание тех и других методов.