Поверхностные сосуды ушей у подростка. Кровоснабжение наружного уха

Кровоснабжение внутреннего уха осуществляется единственно лишь через глубокую ушную артерию (a. auricularis profunda). В случаях нарушения кровообращения в системе этой артерии нельзя рассчитывать на восстановление кровоснабжения во внутреннем ухе за счет какойнибудь другой артерии, так как артерия внутреннего уха почти не имеет анастомозов с другими сосудами. Кровообращение во внутреннем ухе регулируется симпатической нервной системой. Артерия внутреннего уха обеспечивает кровоснабжение:

1) кортиева органа, в котором осуществляется трансформация механической энергии акустических колебаний в биохимическую энергию, в результате чего возникает активный электрический потенциал улитки; при уменьшении количества кислорода, доставляемого кровью чувствительным клеткам, резко понижается интенсивность этого процесса; длительные периоды недостатка кислорода приводят к дегенеративным изменениям в чувствительных клетках кортиева органа;
2) stria vascularis улитки, клетки которой продуцируют лимфу (lympha), представляющую собой жидкую среду перепончатого лабиринта, через которую передаётся механическая энергия акустических колебаний во внутреннем ухе.

Эндолимфа (endolympha) заполняет просвет перепончатого лабиринта, причём регуляция давления эндолимфы осуществляется благодаря её оттоку через водопровод преддверья (aquaeductus vestibuli) в эндолимфатический мешочек (saccus endolymphaticus), где наступает всасывание жидкости. Увеличение проницаемости стенок кровеносных сосудов stria vascularis и скопление большого количества жидкости внутри лабиринта приводит к повышению давления в том случае, если всасывание в эндолимфатическом мешочке оказывается недостаточным.

Увеличение количества эндолимфы в перепончатом лабиринте, а следовательно и повышенное давление внутри него может выравниваться также благодаря просачиванию жидкости в перилимфу, окружающую перепончатый лабиринт, откуда избыток жидкости направляется через водопровод улитки в подпаутинное пространство мозга. Функция системы, регулирующей давление эндолимфы в перепончатом лабиринте, может оказаться недостаточной, вследствие чего возникают определенного рода расстройства. Жидкость, скопившаяся внутри перепончатого лабиринта препятствует нормальной проводимости акустических раздражений к кортиеву органу и, кроме того, раздражающе действует на орган равновесия. Возникает глухота проводимости. Находящаяся в течение длительного времени в перепончатом лабиринте в избыточном количестве жидкость механически, вследствие постоянного повышенного давления, повреждает клетки кортиева органа, в результате чего возникает нарушение звуково-сириятия.

В связи с тем, что кровоснабжение внутреннего уха осуществляется почти исключительно лишь через глубокую ушную артерию и её разветвления, компенсация описанных выше нарушений осуществляется в чрезвычайно медленном темпе.

Этиология этих заболеваний весьма разнообразна, однако их симптомы очень похожи: 1) глухота, 2) шум в ушах, 3) нарушения равновесия (головокружение, падение). Если нарушение кровообращения отражается лишь на функции органа слуха, то возникает глухота проводимости или же глухота восприятия, или же, наконец, глухота смешанного типа, а также шум в ушах; если же ухудшается кровоснабжение органа равновесия, то отмечается головокружение и нарушения равновесия.

В отоларингологической практике врачи чаще всего встречаются с такими больными, у которых одновременно отмечается поражение как одного, так и другого органа внутреннего уха. Нарушения равновесия могут иметь приступообразный характер, а понижение слуха и шум в ушах часто появляются спустя длительное время после первых симптомов нарушения равновесия.

В ряде случаев все эти симптомы : шум в ушах, понижение слуха, сильное головокружение, невозможность сохранять равновесие тела, возникают одновременно и носят приступообразный характер. У одних больных симптомы заболевания очень изменчивы и непостоянны, у других - всегда имеют один и тот же характер. При нарушениях равновесия заболевание имеет приступообразный характер, при нарушениях слуха обычно отмечается постепенное усиление глухоты.

К описанным выше симптомам нарушения функции вестибулярного аппарата обычно присоединяются психические расстройства; чувство страха, нервное возбуждение. Различные по проявлению заболевания лабиринта на почве нарушений кровообращения в зависимости от характера поражения можно подразделить на три типа: водянка лабиринта (hydrops labyrinthicus), внутрилабиринтное кровоизлияние (haemorrhagia labyrinthi), сосудистый спазм (angiospasmus).

I. Водянка лабиринта является наиболее частой причиной описанных выше симптомов, объединенных под общим названием . Водянка лабиринта возникает вследствие увеличения проницаемости стенок кровеносных сосудов и сопровождается нарушением слуха типа глухоты проводимости в связи с увеличением массы (т), через которую проходят акустические колебания, увеличением трения между частицами эидолимфы (г) вследствие изменения ее вязкости и химического состава; а также уменьшением подвижности (s), обусловленным задержкой жидкости в замкнутом пространстве.

Этиологические моменты водянки лабиринта могут быть следующие:
1) аллергические реакции на экзо- и эндогенные аллергены; эндогенные, бактериальные, аллергены так же часто являются причиной синдрома Меньера (Meniere), как и экзогенные аллергены,
2) нарушения выделительной функции желез внутренней секреции,
3) сосудодвигательные расстройства,
4) различного рода расстройства регулирующей функции симпатической нервной системы.

II. Заболевание , вызываемое внутрилабиринтным кровоизлиянием впервые описал Меньер, и до сих пор оно носит название болезни Меньера. Причины кровоизлияния в лабиринт могут быть следующие: 1) гипертоническая болезнь, 2) гормональные расстройства, в особенности у женщин, 3) склероз кровеносных сосудов, 4) болезни крови, характеризующиеся склонностью к гемаррогиям, 5) черепные травмы.

III. Сосудистый спазм (angiospasmus) связан с изменениями регулирующей функции автономной нервной системы.

В противоположность двум первым типам поражений , которые, как правило, бывают односторонними, спазм кровеносных сосудов наблюдается одновременно с обоих сторон. Такого рода заболевание лабиринта начинается внезапной потерей слуха и шумом в ушах. Если сосудистый спазм не разрешается в течение длительного времени, то развиваются застойные явления в венозной системе, увеличивается проницаемость стенок кровеносных сосудов и возникает отек лабиринта. При этом отмечается глухота восприятия, особенно в начальных стадиях, что отличает данное заболевание от поражений внутреннего уха, описанных в пунктах I и П. Нарушения равновесия в данном случае менее типичны, чем при синдроме Меньера.

Иннервация ушной раковины уникальна (рис. 2, 3). Несмотря на то что ушная раковина лишена каких-либо специализированных функций, ей принадлежат афферентные нервы соматического и висцерального происхождения.

Первые представлены ветвями двух крупных нервов - тройничного (n. trigeminus ) и шейного сплетения (plexus cervicalis ), вторые - ветвями блуждающего нерва (n. vagus ), языкоглоточного нерва (n. glossopharingeus ) и лицевого нерва (n. facialis ).

Система тройничного нерва . Ушно-височный нерв (n. auriculotemporalis ), наиболее крупный, ветвь нижнечелюстного нерва - третья ветвь тройничного нерва на уровне уха дает нервы наружного слухового прохода (nn. meatus acustici externi ), которые в виде двух конечных веточек проникают в стенку наружного слухового прохода, иннервируют начало наружного слухового прохода, челнок раковины и корень завитка.

Передние ушные нервы (nn. auricularis anteriores ) являются главными нервами ушной раковины, принадлежащими тригеминальной системе. Зона их иннервации: козелок, часть завитка, треугольная ямка, противо-завиток, часть ладьи, верхняя половина дольки ушной раковины (мочки уха). Границы иннервации ушной раковины тройничным нервом представлены на рис. 4.

Система нервов шейного сплетения . Большой ушной нерв (n. auricularis magnus ) начинается от третьего и реже четвертого шейных нервов (С 3 -С 4). У нижнего полюса ушной раковины он делится на переднюю и заднюю ветви. Передняя ветвь (r. anterior ) иннервирует внутреннюю поверхность ушной раковины, затем, проходя сквозь нее, выходит на наружную поверхность и иннервирует большую часть мочки уха, часть завитка, ладью, желоб завитка, противозавиток, треугольную ямку, края полости раковины. Таким образом, вне сферы иннервации передней ветви остается дно полости раковины.

Задняя ветвь (r. posterior ) разветвляется преимущественно в коже внутренней поверхности уха, частично переходит на наружную поверхность и иннервирует часть завитка, противозавитка и треугольной ямки.

Малый затылочный нерв (n. occipitalis minor ), беря начало от второго и третьего нервов шейного сплетения (С 2 -С 3), верхней ветвью (r. superior ) иннервирует верхний полюс внутренней поверхности уха, часть завитка и треугольную ямку.

Нижняя ветвь (r. inferior ) также иннервирует часть внутренней поверхности уха и, переходя по завитку на наружную поверхность, иннервирует часть завитка и ладью.

Важно отметить, что малый затылочный нерв имеет анастомозы с большим ушным или лицевым нервами. Кроме этого, при помощи соединительных веточек (rr. communicantes ) нервы шейного сплетения соединяются с шейными симпатическими узлами (ganglion sympaticus ). Это обстоятельство исключительно ценно тем, что воздействия на точки акупунктуры, находящиеся в зоне иннервации шейных нервов, могут передаваться на симпатические ганглии и затем распространяться по всей симпатической цепочке.

Границы иннервации ушной раковины нервами шейного сплетения представлены на рис. 5.

Система лицевого нерва . Согласно данным В. П. Воробьева, ушно-височный нерв (система тройничного нерва) на уровне расположения уха соединяется с ветвями промежуточного нерва Врисберга (система лицевого нерва) анастоматическими ветвями (rr. anastomotici cum n. faciale ), которые иннервируют среднюю часть (проекция полости раковины) внутренней поверхности уха, вход в заднюю стенку наружного слухового прохода, козелок и предкозелковую область, полость раковины, треугольную ямку, противозавиток, большую часть дольки ушной раковины (мочки уха). Границы иннервации ушной раковины лицевым нервом представлены на рис. 6.

Система блуждающего и языкогло-точного нервов. На уровне яремного отверстия черепа от ствола блуждающего нерва отходит отдельная ушная ветвь (r. auricularis n. vagi ), которая вместе с присоединившейся тут же ветвью языкоглоточного нерва (r. nеrvi glossopharingeus ) направляется к ушной раковине вдоль яремной вены, через толщу пирамиды височной кости.

После выхода из костного канала эти нервы делятся на две ветви, которые иннервируют внутреннюю поверхность уха, подкозелковую область, трехстороннюю ямку, мочку уха. Границы иннервации ушной раковины блуждающим и языкоглоточным нервом представлены на рис. 7 и 8.

Выполняет функцию, которая имеет большое значение для полноценной жизнедеятельности человека. Поэтому есть смысл изучить его строение более детально.

Анатомия ушей

Анатомическое строение ушей, а также их составных частей оказывает значительное влияние на качество слуха. От полноценной работы этой функции напрямую зависит речь человека. Поэтому чем здоровее ухо, тем легче человеку осуществлять процесс жизнедеятельности. Именно эти особенности и обуславливают тот факт, что правильная анатомия уха имеет большое значение.

Изначально рассматривать строение органа слуха стоит начать с ушной раковины, которая первая бросается в глаза тем, кто не искушен в теме анатомии человека. Расположена она между сосцевидным отростком с задней стороны и височным нижнечелюстным суставом спереди. Именно благодаря ушной раковине восприятие звуков человеком является оптимальным. К тому же именно эта часть уха имеет немаловажное косметическое значение.

В качестве основы ушной раковины можно определить пластинку хряща, толщина которого не превышает 1 мм. С обеих сторон она покрыта кожей и надхрящницей. Анатомия уха также указывает и на тот факт, что единственной частью раковины, лишенной хрящевого остова, является мочка. Она состоит из покрытой кожей жировой клетчатки. Ушная раковина имеет выпуклую внутреннюю часть и вогнутую наружную, кожа которой плотно сращена с надхрящницей. Говоря о внутренней части раковины, стоит отметить, что в этой области соединительная ткань развита значительно заметней.

Стоит отметить и тот факт, что две трети длины наружного слухового прохода занимает перепончато-хрящевой отдел. Что касается костного отдела, то ему достается лишь третья часть. В качестве основы перепончато-хрящевого отдела выступает продолжение хряща ушной раковины, который имеет вид открытого сзади желоба. Его хрящевой остов прерывают идущие вертикально санториниевые щели. Они закрываются фиброзной тканью. Граница слухового прохода и находится именно в том месте, где расположены данные щели. Именно этот факт объясняет возможность развития заболевания, появившегося в наружном ухе, в области околоушной железы. Стоит понимать, что данное заболевание может распространяться и в обратном порядке.

Тем, для кого актуальна информация в рамках темы «анатомия ушей», стоит обратить внимание и на тот факт, что перепончато-хрящевой отдел соединяется с костной частью наружного слухового прохода посредством фиброзной ткани. Наиболее узкую часть можно обнаружить в средине данного отдела. Называется она перешейком.

В пределах перепончато-хрящевого отдела кожа содержит серные и сальные железы, а также волосы. Именно из секрета этих желез, равно как и чешуек эпидермиса, который был отторгнут, образуется ушная сера.

Стенки наружного слухового прохода

Анатомия ушей включает информацию и о различных стенках, которые расположены в наружном проходе:

  • Верхняя костная стенка. Если в этой части черепа происходит перелом, то его следствием может быть ликворея и кровотечение из слухового прохода.
  • Передняя стенка. Она находится на границе с височно-челюстным суставом. Передача движений самой челюсти идет на перепончато-хрящевую часть наружного прохода. Резкие болезненные ощущения могут сопровождать процесс жевания в том случае, если в области передней стенки присутствуют воспалительные процессы.

  • Анатомия уха человека касается изучения и задней стенки наружного слухового прохода, которая отделяет последний от сосцевидных ячеек. В основании именно этой стенки проходит лицевой нерв.
  • Нижняя стенка. Эта часть наружного прохода отграничивает его от слюнной околоушной железы. По сравнению с верхней она длиннее на 4-5 мм.

Иннервация и кровоснабжение органов слуха

На эти функции необходимо обратить внимание в обязательном порядке тем, кто изучает строение уха человека. Анатомия органа слуха включает подробную информацию о его иннервации, которая осуществляется посредством тройничного нерва, ушной ветви блуждающего нерва, а также При этом именно задний ушной нерв обеспечивает снабжение нервами рудиментарных мышц ушной раковины, хотя их функциональную роль можно определить, как достаточно низкую.

Касаясь темы кровоснабжения стоит отметить, что подача крови обеспечивается из системы наружной сонной артерии.

Снабжение кровью непосредственно самой ушной раковины производится при помощи поверхностной височной и задней ушной артерии. Именно эта группа сосудов совместно с ветвью верхнечелюстной и задней ушной артерии обеспечивают кровоток в глубоких отделах уха и барабанной перепонки в частности.

Хрящ получает питание от сосудов, расположенных в надхрящнице.

В рамках такой темы, как «Анатомия и физиология уха», стоит рассмотреть процесс венозного оттока в этой части тела и движение лимфы. Венозная кровь уходит из уха по задней ушной и задненижней-челюстной вене.

Что касается лимфы, то ее отток из наружного уха осуществляется посредством узлов, которые находятся в сосцевидном отростке спереди от козелка, а также под нижней стенкой слухового наружного прохода.

Барабанная перепонка

Эта часть органа слуха выполняет функцию разделения наружного и среднего уха. По сути, речь идет о полупрозрачной фиброзной пластинке, которая достаточно прочна и напоминает форму овала.

Без этой пластинки не сможет полноценно функционировать ухо. Анатомия строение барабанной перепонки раскрывает достаточно детально: её размер равен приблизительно 10 мм, ширина ее при этом составляет 8-9 мм. Интересным является тот факт, что у детей эта часть органа слуха почти такая же, как и у взрослых. Единственное отличие сводится к ее форме - в раннем возрасте она округлая и ощутимо толще. Если взять за ориентир ось наружного слухового прохода, то по отношению к ней барабанная перепонка расположена косо, под острым углом (приблизительно 30°).

Стоит отметить, что данная пластина находится в желобке волокнисто-хрящевого барабанного кольца. Под воздействием звуковых волн барабанная перепонка начинает дрожать и передает колебания в среднее ухо.

Барабанная полость

Клиническая анатомия среднего уха включает информацию о его строении и функциях. К этой части органа слуха относится равно как и слуховая трубка с системой воздухоносных ячеек. Сама полость - это щелевидное пространство, в котором можно различить 6 стенок.

Более того, в среднем ухе находится три ушные косточки - наковаленка, молоточек и стремечко. Соединяются они при помощи маленьких суставчиков. При этом молоточек находится в непосредственной близости к барабанной перепонке. Именно он отвечает за восприятие звуковых волн, переданных перепонкой, под воздействием которых молоточек начинает дрожать. Впоследствии вибрация передается наковаленке и стремечку, а далее на нее реагирует внутреннее ухо. Такова анатомия ушей человека в средней их части.

Как устроено внутреннее ухо

Эта часть органа слуха находится в области височной кости и внешне напоминает лабиринт. В данной части полученные звуковые колебания превращаются в электрические импульсы, которые направляются в головной мозг. Лишь после полного завершения этого процесса человек способен реагировать на звук.

Важно обратить внимание и на тот факт, что во внутреннем ухе человека содержатся полукружные каналы. Это актуальная информация для тех, кто изучает строение уха человека. Анатомия этой части органа слуха имеет вид трех трубок, которые изогнуты в форме дуги. Они располагаются в трех плоскостях. По причине патологии данного отдела уха возможны нарушения в работе вестибулярного аппарата.

Анатомия звукообразования

Когда энергия звука попадает во внутреннее ухо, она преобразуется в импульсы. При этом по причине особенностей строения уха звуковая волна распространяется очень быстро. Следствием этого процесса является возникновение способствующего сдвигу покровной пластинки. В результате происходит деформация стереоцилий волосковых клеток, которые, придя в состояние возбуждения, при помощи сенсорных нейронов передают информацию.

Заключение

Нетрудно заметить, что строение уха человека является достаточно сложным. По этой причине важно следить за тем, чтобы орган слуха оставался здоровым и не допускать развитие заболеваний, обнаруженных в данной области. В противном случае можно столкнуться с такой проблемой, как нарушение восприятия звука. Для этого при первых же симптомах, даже если они незначительны, рекомендуется нанести визит к врачу с высокой квалификацией.

Кровоснабжение внутреннего уха осуществляется лабиринтной артерией, которая в 65% отходит от передней нижне-мозжечковой артерии, в 29% ─ от базилярной артерии, в 0,5% ─ от задненижней мозжечковой артерии и в 5,5% ─ от различных источников с правой и левой стороны (мозжечковые и базилярные артерии) (рис. 4).

Рис. 4 Артерии вестибулярного аппарата (обозначения на рисунке) [по 17]

Arteria labyrinthi вступает во внутренний слуховой проход вместе с лицевым и статоакустическим нервом. Артерия лабиринта является конечной артерией, т. е. не имеющей значительных анастомозов с другими артериями, крайне редко она даёт ветви к нижне-передней мозжечковой артерии. Ход этой артерии чаще всего прямой (при отхождении от нижне-передней мозжечковой артерии) или дугообразный (при отхождении от основной артерии). Ширина просвета лабиринтной артерии мала и может быть отнесена к субмиллиметрическим . При входе во внутреннее ухо лабиринтная артерия делится на передне-преддверную артерию и общую улитковую артерию, которая заканчивается делением на преддверно-улитковую и улитковую артерии. Передняя преддверная артерия кровоснабжает верхние отделы вестибулярного лабиринта, включая горизонтальный полукружный канал, макулу утрикулюса и вестибулярный нерв. Общая улитковая артерия питает нижние отделы вестибулярного лабиринта и улитку. Между этими ветвями лабиринтной артерии почти нет анастомозов на уровне верхних отделов лабиринта в отличие от наличия коллатералей на уровне нижних отделов лабиринта .

Эти анатомические особенности и обуславливают различную чувствительность отделов лабиринта к ишемии. Чувствительность к ишемии перепончатого лабиринта как органа равновесия и слуха обусловлена также тем, что отсутствует коллатеральное кровообращение со стороны сосудов ушной капсулы .

Ушной лабиринт наиболее чувствителен к развитию ишемических состояний в вертебрально-базилярном бассейне . Головокружение в этих условиях обуславливается разницей между кровотоком по правой и левой лабиринтным артериям или более крупным сосудам вертебрально-базиляр-ной системы, а следовательно, разницей в кровоснабжении правого и левого лабиринта .

Вестибулярные ядра занимают значительную зону в латеральных отделах ствола головного мозга и кровоснабжаются проникающими веточками от позвоночных и основной артерий. Клинически важным является то, что эта область особенно подвержена как ишемическому, так и геморрагическому поражению .

3. Функции вестибулярной системы.

Вестибулярная система выполняет три основные функции (рис.1): ориентация в пространстве, управление равновесием и стабилизация изображения.

3.1 Ориентация в пространстве

Функция ориентации в пространстве чрезвычайно важна - необходимое условие для управления позой тела, передвижения и взаимодействия с окружающей средой . Для оптимальной реализации этой функции необходимо получать информацию от всех органов чувств. Вестибулярный аппарат является частью сложной системы сенсорной интерпретации и интеграции . Визуальное наблюдение нашего положения в среде помогает определить абсолютное положение. Пациенты, имеющие патологию вестибулярного аппарата, компенсируют эту патологию в значительной степени зрительной информацией. Рассогласование функционирования вестибулярной, зрительной и проприоцептивной систем и отсутствие синхронной афферентации в центры обуславливает развитие неустойчивости .

3.2 Стабилизация изображения

Изображение, перемещающееся по сетчатке быстрее, чем 2-3 градуса в секунду, не может быть обработано зрительной системой без размывания изображения. По этой причине движущееся изображение долж­но быть стабилизировано в сетчатке. Если мишень движется, то глазодвигательный аппарат способен перемещать взгляд, позволяя ему, благодаря оптокинетическому рефлексу, следовать за мишенью. Если мишень неподвижна, изображение мишени на сетчатке также будет перемещаться, если индивидуум совершит движение головой. В этой ситуации стабилизация изображения достигается путем движения глаз в направлении, противоположном тому, в котором движется голова (компенсаторное движение глаз, или вестибуло-окулярный рефлекс) .

3. 2.1 Саккадический взор

Глазодвигательная реакция в виде рывкового движения обоих глаз в сторону заинтересовавшего объекта называется саккады (от франц: saccade – внезапная задержка коня рывком) по . Изображение, появляющееся в периферическом поле зрения, быстро перемещается в область центральной ямки сетчатки (область наибольшего пространственного разрешения) для детального анализа путем быстрого скачкообразного движения (подергивания) глаз, на протяжении которого зрение кратковременно подавляется. Точность этих движений постоянно регулируется за счет обратной зрительной связи. При этом стимул от коры головного мозга достигает ядра отводящего нерва противоположной стороны и – после перекреста в верхних отделах моста – ипсилатерального ядра глазодвигательного нерва. Это приводит к одновременному сокращению соответственно латеральной прямой мышцы одного глаза и медиальной прямой мышцы противоположного глаза и как следствие к содружественному повороту глазных яблок. Такой гармоничный нервный механизм возможен в силу синхронной работы волокон в рамках медиального продольного пучка.

3.2.2 Следящие движения глаз

Глазодвигательная система также способна следить за мишенью, когда та приходит в движение. Вовлеченный в этот процесс рефлекс называется плавным слежением. Рефлекс зрительного прослеживания управляет процессами на пути от центральной ямки сетчатки через латеральное коленчатое тело (corpus geniculatumlaterale) в таламусе (зрительный бугор) к зрительной зоне коры головного мозга (19-е поле теменно – затылочной области). В результате поступает моторная команда через кортико – тектальные и кортико – тегментальные волокна в средний мозг и варолиев мост, мозжечок и вестибулярные ядра к глазодвигательному ядру и косым (extra-ocular) глазодвигательным мышцам. Время запаздывания составляет 70 миллисекунд. При плавном слежении движения должны быть очень точны, поскольку центральная ямка сетчатки занимает область только в 1 дуговой градус - изображение движущегося предмета может легко выскользнуть из этой области. Для офтальмологически здорового человека скорость движения стимула по сетчатке не должна превышать 30 – 60 градусов в секунду . При более высоких скоростях этот механизм становится неадекватным и требуются коррекционные саккады для фиксации мишени в центральной ямке сетчатки.

3.2.3. Оптокинетический рефлекс

В коре оптокинетический рефлекс проходит тот же самый путь, что и рефлекс плавного слежения, однако он использует информацию, получаемую от всей сетчатки. Например, когда мы смотрим на проезжающий мимо поезд, изображение поезда перемещается по сетчатке и зрительная система подсчитывает скорость перемещения изображения в зрительной зоне коры головного мозга. На основании этой информации генерируются парные (конъюгированные) движения глаз (оптокинетический нистагм) со скоростью, которая соответствует скорости пере­мещения мишени. Инициация медленного компонента оптокинетического нистагма определяется прохождением отражений по периферической части сетчатки. Быстрый компонент нистагма играет более активную роль с привлечением высших корковых центров, связанных с фиксационным рефлексом. Подкорковый оптокинетический рефлекс позволяет младенцам стабилизировать зрительные образы, перемещающиеся по сетчатке. В течение первых месяцев жизни зрение плохо развито; нет способности плавно отслеживать перемещение предмета, и создается впечатление, что малышами воспринимаются только большие предметы, привлекающие внимание. Скорость передвижения образа подсчитывается каждым глазом по отдельности в обоих ядрах оптического тракта через память хранения значений скорости (расположена в ядре перед ядром подъязычного нерва и мозжечке), и в зависимости от данных о ней производится активация косых (ехtra – ocular) глазодвигательных мышц. Этот путь также активен у взрослых, когда происходит подсознательное наблюдение за мишенью. Подкорковый путь начинает функционировать с момента рождения, обходя центр взгляда в ретикулярной формации Варолиева моста, который отвечает за согласованность движений обоих глаз. Поэтому у новорожденных оптокинетические рефлексы проявляются для каждого глаза независимо, пока не разовьется бинокулярное зрение, в котором участвует кора головного мозга. Для формирования коркового оптокинетического рефлекса нужно время. До того как глаза начнут двигаться, должна быть заполнена память хранения значений скорости. Остаточная активность, хранимая в памяти, отвечает за движение глаз (нистагм), которое происходит в том случае, если зрительный стимул внезапно исчезнет. Это явление называется "оптокинетический эффект после нистагма" ("optokinematic after nystagmus") (OKAN) и часто используется для выяснения того, не повреждена ли функция хранения информации о скорости. Дисфункция системы хранения информации о скорости или снижение объема информации, поступающей от лабиринтов (недостаточность лабиринтов) обычно приводит к укорачиванию поствращательных (post-rotatory) ответных реакций. Пассивный ответ на оптокинетический стимул можно получить при помощи оптокинетичнского барабана .

3.2.4.Глазовестибулярные рефлексы

Образ мишени на сетчатке будет перемещаться также в том случае, когда индивидуум перемещает свою голову, хотя мишень может быть и неподвижной. Рефлексы, ответственные за движение глаз в процессе зрения, обычно действуют слишком медленно, чтобы стабилизировать изображение на сетчатке, если перемещение головы производится быстро. Глазовестибулярные рефлексы - достаточно быстрый механизм, в то время как движения глаз в соответствии со скоростью вызываются непосредственно стимуляцией лабиринтов. Этот рефлекс, возможно, срабатывает в теле быстрее всех, так как время задержки составляет 7-10 миллисекунд (из которых 2 миллисекунды уходят на механический процесс, приводимый в действие из-за преломления света, и около 5 миллисекунд - на проведение нервного импульса и сокращеие/ расслабление косых (extra-ocular) глазодвигательных мышц).

От лабиринтов информация передается в вестибулярное ядро ствола мозга и затем к глазодвигательному ядру, производя компенсационные движения глаз. В результате скорость перемещения образа по сетчатке минимизируется за счет передвижения глаз в направлении, противоположном тому, в котором движется голова. Далее осуществляется зрительная обратная связь: зрительная зона коры головного мозга обрабатывает информацию об остающемся движении образа и посылает сигнал вестибулярному ядру через центры взгляда в варолиевом мосту и мозжечок для регулировки силы рефлекса. В лабораторных условиях сила рефлекса регулируется в диапазоне до 30 % в течение нескольких минут .

3.3 Восприятие.

Различные области в теменной и височной зоне коры головного мозга активируются стимулами, исходящими от лабиринтов, органов зрения и проприоцепторов. Предположительно, эти области со многими сенсорами участвуют в ориентации в пространстве и восприятии движения. По этой причине функция вестибулярной зоны коры головного мозга, видимо, распределена между несколькими областями со многими сенсорами и интегрируется в большую сеть для "пространственного внимания" и сенсорно-двигательного управления. Вестибулярная зона теменно-островковой области коры головного мозга считается основной зоной в вестибулярной системе коры. Она представлена с обеих сторон, при этом доминирующую роль играет правое полушарие.

КОНТРОЛЬНЫЕ ВОПРОСЫ:

1. Чем обусловлено разнообразие вестибулярных реакций, развивающихся при предъявлении надпорогового стимула.

2.Что является адекватным раздражителем для ампулярного и отолитового аппарата.

3. Чем обусловлена различная чувствительность отделов ушного лабиринта к ишемии.

4. Из какого артериального бассейна кровоснабжается внутреннее ухо.

5. Чем обусловлен быстрый и медленный компонент оптокинетического нистагма.

Слуховой анализатор. Волосковые клетки кортиева органа синаптически связаны с периферическими отростками биполярных клеток спирального ганглия (ganglion spirale), расположенного в основании спиральной пластинки улитки. Центральные отростки биполярных нейронов спирального ганглия являются волокнами слуховой (улитковой) порции VIII нерва (n. cochleovestibularis), который проходит через внутренний слуховой проход и в области мосто-мозжечкового угла входит в мост. На дне четвертого желудочка VIII нерв делится на два корешка: верхний вестибулярный и нижний улитковый.

Волокна улиткового корешка заканчиваются в латеральном углу ромбовидной ямки на клетках вентрального ядра (nucl. ventralis) и дорсального улиткового ядра (nucl. dorsalis). Таким образом, клетки спирального ганглия вместе с периферическими отростками, идущими к нейроэпителиальным волосковым клеткам органа Корти, и центральными отростками, заканчивающимися в ядрах моста, составляют I нейрон слухового анализатора. На уровне кохлеарных ядер расположен ряд ядерных образований, принимающих участие в формировании дальнейших путей для проведения слуховых раздражений: ядро трапециевидного тела, верхняя олива, ядро боковой петли. От вентрального и дорсального ядер начинается II нейрон слухового анализатора. Меньшая часть волокон этого нейрона идет по одноименной стороне, а большая часть в виде striae acusticae перекрещиваются и переходят на противоположную сторону моста, заканчиваясь в оливе и трапециевидном теле. Волокна III нейрона в составе боковой петли идут к ядрам четверохолмия и медиального коленчатого тела, откуда уже волокна IV нейрона после второго частичного перекреста направляются в височную долю мозга и оканчиваются в корковом отделе слухового анализатора, располагаясь преимущественно в поперечных височных извилинах Гешля.

Проведение импульсов от кохлеарных рецепторов по обеим сторонам мозгового ствола объясняет то обстоятельство, что одностороннее нарушение слуха возникает только в случае поражения среднего и внутреннего уха, а также кохлеовестибулярного нерва и его ядер в мосту. При одностороннем поражении латеральной петли, подкорковых и корковых слуховых центров импульсы от обоих кохлеарных рецепторов проводятся по непораженной стороне в одно из полушарий и расстройства слуха может не быть.

Слуховая система обеспечивает восприятие звуковых колебаний, проведение нервных импульсов к слуховым нервным центрам, анализ получаемой информации.

Вестибулярный анализатор. Рецепторные клетки вестибулярного анализатора контактируют с окончаниями периферических отростков биполярных нейронов вестибулярного ганглия (gangl. zestibulare), расположенного во внутреннем слуховом проходе. Центральные отростки этих нейронов формируют вестибулярную порцию преддверно-улиткового (VIII) нерва, который проходит во внутреннем слуховом проходе, выходит в заднюю черепную ямку и в области мостомозжечкового угла внедряется в вещество мозга. В вестибулярных ядрах продолговатого мозга, в дне четвертого желудочка, заканчивается I нейрон. Вестибулярный ядерный комп¬лекс включает четыре ядра: латеральное, медиальное, верхнее и нис¬ходящее. От каждого ядра идет с преимущественным перекрестом II нейрон.

Высокие адаптационные возможности вестибулярного анализатора обусловлены наличием множества ассоциативных путей ядерного вестибулярного комплекса. С позиций клинической анатомии важно отметить пять основных связей вестибулярных ядер с различными образованиями центральной и периферической нервной системы.

    Вестибулоспинальные связи. Начинаясь от латеральных ядер продолговатого мозга, в составе вестибулоспинального тракта, они проходят в передних рогах спинного мозга, обеспечивая связь вестибулярных рецепторов с мышечной системой.

    Вестибулоглазодвигательные связи осуществляются через систему заднего продольного пучка: от медиального и нисходящего ядер продолговатого мозга идет перекрещенный путь, а от верхнего ядра - неперекрещенный, к глазодвигательным ядрам.

    Вестибуловегетативные связи осуществляются от медиального ядра к ядрам блуждающего нерва, ретикулярной фармации, диэнцефальной области.

    Вестибуломозжечковые пути проходят во внутреннем отделе нижней ножки мозжечка и связывают вестибулярные ядра с ядрами мозжечка.

    Вестибулокортикалъные связи обеспечиваются системой волокон, идущих от всех четырех ядер к зрительному бугру. Прерываясь в последнем, далее эти волокна идут к височной доле мозга, где вестибулярный анализатор имеет рассеянное представительство. Кора и мозжечок выполняют регулирующую функцию по отношению к вестибулярному анализатору.

Посредством указанных связей реализуются разнообразные сенсорные, вегетативные и соматические вестибулярные реакции.