Химические реакции в повседневной жизни. Химические и физические явление в природе и быту

Динамические изменения встроены в саму природу. Все меняется так или иначе каждый момент. Если вы внимательно осмотритесь, вы найдете сотни примеров физических и химических явлений, которые являются вполне себе естественными преобразованиями.

Изменения - единственная константа во Вселенной

Как ни странно, изменение является единственной константой в нашей Вселенной. Чтобы понять физические и химические явления (примеры в природе встречаются на каждом шагу), принято классифицировать их по типам, в зависимости от характера конечного результата, вызванного ими. Различают физические, химические и смешанные изменения, которые содержат в себе и первые, и вторые.

Физические и химические явления: примеры и значение

Что такое физическое явление? Любые изменения, происходящие в веществе без изменения его химического состава, являются физическими. Они характеризуется изменениями физических атрибутов и материального состояния (твердое, жидкое или газообразное), плотности, температуры, объема, которые происходят без изменения его фундаментальной химической структуры. Не происходит создание новых химических продуктов или изменения общей массы. Кроме того, этот тип изменений обычно является временным и в некоторых случаях полностью обратимым.

Когда вы смешиваете химикаты в лаборатории, можно легко увидеть реакцию, но в мире вокруг вас происходит множество химических реакций каждый день. Химическая реакция изменяет молекулы, в то время как физическое изменение только перестраивает их. Например, если мы возьмем газ хлора и металлический натрий и объединим их, мы получим столовую соль. Полученное вещество сильно отличается от любого из его составных частей. Это химическая реакция. Если затем растворить эту соль в воде, мы просто смешиваем молекулы соли с молекулами воды. В этих частицах нет изменений, это физическое преобразование.

Примеры физических изменений

Все состоит из атомов. При соединении атомов образуются разные молекулы. Различные свойства, которые наследуют объекты, являются следствием различных молекулярных или атомных структур. Основные свойства объекта зависят от их молекулярного расположения. Физические изменения происходят без изменения молекулярной или атомной структуры объектов. Они просто преобразуют состояние объекта, не изменяя его природы. Плавление, конденсация, изменение объема и испарения являются примерами физических явлений.

Дополнительные примеры физических изменений: металл, расширяющийся при нагревании, передача звука через воздух, замерзание воды зимой в лед, медь втягивается в провода, формирование глины на разных объектах, мороженое плавится до жидкости, нагревание металла и преобразование его в другую форму, сублимация йода при нагревании, падение любого объекта под действием силы тяжести, чернила поглощаются мелом, намагничивание железных гвоздей, снеговик, тающий на солнце, светящиеся лампы накаливания, магнитная левитация объекта.

Как различать физические и химические изменения?

Множество примеров химических явлений и физических можно встретить в жизни. Часто трудно определить разницу между ними, особенно когда оба могут происходить одновременно. Чтобы определить физические изменения, задайте следующие вопросы:

  • Является ли состояние состояния объекта изменением (газообразным, твердым и жидким)?
  • Является ли изменение чисто ограниченным физическим параметром или характеристикой, такой как плотность, форма, температура или объем?
  • Является ли химическая природа объекта изменением?
  • Возникают ли химические реакции, приводящие к созданию новых продуктов?

Если ответ на один из первых двух вопросов да, и ответы на последующие вопросы отсутствуют, это, скорее всего, это физическое явление. И наоборот, если ответ на любой из двух последних вопросов положительный, в то время как первые два отрицательные, это, безусловно, химическое явление. Трюк состоит в том, чтобы просто четко наблюдать и анализировать то, что вы видите.

Примеры химических реакций в повседневной жизни

Химия происходит в окружающем вас мире, а не только в лаборатории. Материя взаимодействует для образования новых продуктов посредством процесса, называемого химической реакцией или химическим изменением. Каждый раз, когда вы готовите или убираете, это химия в действии. Ваше тело живет и растет благодаря химическим реакциям. Есть реакции, когда вы принимаете лекарства, зажигаете спичку и вздыхаете. Вот 10 химических реакций в повседневной жизни. Это всего лишь небольшая выборка из тех примеров физических и химических явлений в жизни, которые вы видите и испытываете много раз каждый день:

  1. Фотосинтез. Хлорофилл в листьях растений превращает углекислый газ и воду в глюкозу и кислород. Это одна из самых распространенных ежедневных химических реакций, а также одна из самых важных, поскольку именно так растения производят пищу для себя и животных и превращают углекислый газ в кислород.
  2. Аэробное клеточное дыхание является реакцией с кислородом в человеческих клетках. Аэробное клеточное дыхание является противоположным процессом фотосинтеза. Разница заключается в том, что молекулы энергии объединяются с кислородом, которым мы дышим, чтобы высвободить энергию, необходимую нашим клеткам, а также углекислый газ и воду. Энергия, используемая клетками, представляет собой химическую энергию в виде АТФ.
  3. Анаэробное дыхание. Анаэробное дыхание производит вино и другие ферментированные продукты. Ваши мышечные клетки выполняют анаэробное дыхание, когда вы исчерпываете подаваемый кислород, например, при интенсивном или продолжительном упражнении. Анаэробное дыхание дрожжами и бактериями используется для ферментации для производства этанола, углекислого газа и других химических веществ, которые производят сыр, вино, пиво, йогурт, хлеб и многие другие распространенные продукты.
  4. Сгорание - это тип химической реакции. Это химическая реакция в повседневной жизни. Каждый раз, когда вы зажигаете спичку или свечу, разжигаете костер, вы видите реакцию горения. Сжигание объединяет энергетические молекулы с кислородом для получения двуокиси углерода и воды.
  5. Ржавчина - общая химическая реакция. Со временем железо развивает красное, шелушащееся покрытие, называемое ржавчиной. Это пример реакции окисления. Другие повседневные примеры включают формирование вердигров на меди и потускнение серебра.
  6. Смешивание химических веществ вызывает химические реакции. Пекарский порошок и пищевая сода выполняют аналогичные функции при выпечке, но они по-разному реагируют на другие ингредиенты, поэтому вы не всегда можете заменить их на другой. Если вы комбинируете уксус и пищевую соду для химического "вулкана" или молока с порошком для выпечки в рецепте, вы испытываете реакцию двойного смещения или метатезиса (плюс некоторые другие). Ингредиенты рекомбинируют для получения газообразного диоксида углерода и воды. Углекислый газ образует пузырьки и помогает "выращиванию" хлебобулочных изделий. Эти реакции кажутся простыми на практике, но часто состоят из нескольких этапов.
  7. Батареи являются примерами электрохимии. Батареи используют электрохимические или окислительно-восстановительные реакции для превращения химической энергии в электрическую.
  8. Пищеварение. Тысячи химических реакций происходят во время пищеварения. Как только вы положите пищу в рот, фермент в вашей слюне, называемый амилазой, начинает разрушать сахара и другие углеводы в более простые формы, которые ваше тело может поглощать. Соляная кислота в вашем желудке реагирует с пищей, чтобы ее разрушить, а ферменты расщепляют белки и жиры, чтобы они могли всасываться в кровь через стенки кишечника.
  9. Кислотно-базовые реакции. Всякий раз, когда вы смешиваете кислоту (например, уксус, лимонный сок, серную кислоту, соляную кислоту) со щелочью (например, пищевой содой, мылом, аммиаком, ацетоном), вы выполняете кислотно-щелочную реакцию. Эти процессы нейтрализуют друг друга, получая соль и воду. Хлорид натрия не является единственной солью, которая может быть образована. Например, здесь приведено химическое уравнение для реакции кислотно-щелочной реакции, в которой образуется хлорид калия, обычный заменитель столовой соли: HCl + KOH → KCl + H 2 O.
  10. Мыло и моющие средства. Их очищают путем химических реакций. Мыло эмульгирует грязь, что означает, что масляные пятна связываются с мылом, чтобы их можно было снять водой. Моющие средства снижают поверхностное натяжение воды, поэтому они могут взаимодействовать с маслами, изолировать их и смывать.
  11. Химические реакции при приготовлении пищи. Кулинария - один большой практический эксперимент по химии. Приготовление использует тепло, чтобы вызвать химические изменения в пище. Например, когда вы сильно кипятите яйцо, сероводород, полученный нагреванием яичного белка, может реагировать с железом из яичного желтка, образуя серо-зеленое кольцо вокруг желтка. Когда вы готовите мясо или выпечку, реакция Майяра между аминокислотами и сахарами дает коричневый цвет и желательный вкус.

Другие примеры химических и физических явлений

Физические свойства описывают характеристики, которые не изменяют вещество. Например, вы можете изменить цвет бумаги, но это еще бумага. Вы можете кипятить воду, но когда вы собираете и конденсируете пар, это все еще вода. Вы можете определить массу листа бумаги, и это все еще бумага.

Химическими свойствами являются те, которые показывают, как вещество реагирует или не реагирует с другими веществами. Когда металлический натрий помещают в воду, он реагирует бурно, образуя гидроксид натрия и водород. Достаточное тепло выделяется тем, что водород вырывается в пламя, реагируя с кислородом в воздухе. С другой стороны, когда вы кладете кусок медного металла в воду, реакция не возникает. Таким образом, химическое свойство натрия заключается в том, что он реагирует с водой, а химическое свойство меди заключается в том, что это не так.

Какие еще можно привести примеры химических явлений и физических? Химические реакции всегда происходят между электронами в валентных оболочках атомов элементов в периодической таблице. Физические явления на низких энергетических уровнях просто включают механические взаимодействия - случайные столкновения атомов без химических реакций, таких как атомы или молекулы газа. Когда энергии столкновений очень велики, целостность ядра атомов нарушается, что приводит к делению или слиянию вовлеченных видов. Спонтанный радиоактивный распад обычно считается физическим явлением.

I. Новый материал

Из курса природоведения и физики вы знаете, что с телами и веществами происходят разнообразные изменения.

Прежде чем приступить к изучению темы урока, я предлагаю вам выполнить следующее задание, не торопитесь с ответами, выполните задание до конца.

Задание:

Рассмотрите внимательно картинки и попробуйте ответить на следующие вопросы:

1. Где можно наблюдать явления, представленные на рисунках и картинках?

№1

№2

№3

№4


№5

№6

2. Дайте название каждому явлению. Какие вещества участвуют в представленных явлениях? Что происходит с каждым веществом в происходящем явлении? Запишите в рабочих тетрадях и заполните следующую таблицу:

№, Название явления

Вещество, участвующее в явлении

Изменения, происходящие с веществом

№1,..





№6,..



3. В каких явлениях образуются новые вещества?

4. Как и по каким признакам можно разделить представленные явления?

Физические и химические явления

Проводя опыты и наблюдения, мы убеждаемся, что вещества могут изменяться.

Изменения веществ, которые не ведут к образованию новых веществ (с иными свойствами), называют физическими явлениями.


1. Вода при нагревании может переходить в пар, а при охлаждении – в лед .

2. Длина медных проводов изменяется летом и зимой: увеличивается при нагревании и уменьшается при охлаждении.

3. Объем воздуха в шаре увеличивается в теплом помещении.

Изменения с веществами произошли, но при этом вода осталась водой, медь – медью, воздух – воздухом.

Новых веществ, несмотря на их изменения, не образовалось.

ПРОАНАЛИЗИРУЕМ ОПЫТ

1. Закроем пробирку пробкой со вставленной в нее трубкой

2. Опустим конец трубки в стакан с водой. Рукой нагреем пробирку. Объем воздуха в ней увеличивается, и часть воздуха из пробирки выходит в стакан с водой (выделяются пузырьки воздуха).

3. При охлаждении пробирки объем воздуха уменьшается, и вода входит в пробирку.

Вывод. Изменения объема воздуха – физическое явление.

Химическое явление (реакция) – явление, при котором образуются новые вещества.

А по каким признакам можно определить, что произошла химическая реакция ? При некоторых химических реакциях происходит выпадение осадка. Другие признаки – изменение цвета исходного вещества, изменение его вкуса, выделение газа, выделение или поглощение тепла и света.

Примеры таких реакций рассмотри в таблице

Признаки химических реакций

Изменение цвета исходного вещества

Изменение вкуса исходного вещества

Выпадение осадка

Выделение газа

Появление запаха

РЕАКЦИЯ

ПРИЗНАК


ИЗМЕНЕНИЕ ЦВЕТА


ИЗМЕНЕНИЕ ВКУСА


ВЫДЕЛЕНИЕ ГАЗА

В живой и неживой природе постоянно протекают различные химические реакции. Наш с тобой организм тоже настоящая фабрика химических превращений одних веществ в другие.

Понаблюдаем за некоторыми химическими реакциями.

Опыты с огнем самостоятельно проводить нельзя!!!

Опыт 1

Подержим над огнем кусочек белого хлеба, содержащего органические вещества.

Наблюдаем:

1. Обугливание, то есть изменение цвета;

2. Появление запаха.

Вывод . Произошло химическое явление (образовалось новое вещество - уголь)

Опыт 2

Приготовим стаканчик с крахмалом. Добавим немного воды, перемешаем. Затем капнем раствором йода.

Наблюдаем:

1. Признак реакции: изменение цвета (посинение крахмала)

Вывод. Произошла химическая реакция. Крахмал превратился в другое вещество.

Опыт 3

1. Разведем в стакане небольшое количество питьевой соды.

2. Добавим туда несколько капель уксуса (можно взять сок лимона или раствор лимонной кислоты).


Наблюдаем :
1. Выделение пузырьков газа.

Вывод. Выделение газа – один из признаков химической реакции.

Некоторые химические реакции сопровождаются выделением тепла.

Подведём итоги

1. Вещества могут участвовать в физических и химических явлениях

2. Сравнительная характеристика физических и химических явлений представлены следующей интерактивной анимацией

3. Отличие физических и химических явлений

·При физических явлениях молекулы вещества не разрушаются, вещество сохраняется.

·При химических явлениях молекулы вещества распадаются на атомы, из атомов образуются молекулы нового вещества.

Признаки химических реакций

Изменение цвета


Выпадение или растворение осадка

Ручаюсь, вы не раз замечали что-нибудь вроде того, как мамино серебряное кольцо со временем темнеет. Или как ржавеет гвоздь. Или как сгорают в золы деревянные поленья. Ну а если мама не любит серебро, а в походы вы не никогда не ходили, и как заваривается чайный пакетик в чашке видели точно.

Что общего у всех этих примеров? А то, что все они относятся к химическим явлений.

Химические явления в быту

К ним относятся те, что можно наблюдать в повседневной жизни современного человека. Некоторые из них совсем простые и очевидные, любой может наблюдать их на своей кухне: например, заваривания чая. Нагретые кипятком чаинки меняют свои свойства, в результате меняется и состав воды: она приобретает другой цвет, вкус и свойства. То есть получается новое вещество.

Если в этот же чай насыпать сахар, в результате химической реакции получится раствор, который снова будет обладать набором новых характеристик. В первую очередь, новым, сладким, вкусом.

На примере прочной (концентрированной) чайной заварки можете самостоятельно провести и еще один опыт: осветлить чай с помощью дольки лимона. Через кислоту, содержащиеся в лимонном соке, жидкость еще раз изменит свой состав.

Еще явления можно наблюдать в быту? Например, к химическим явлениям относится процесс сгорания топлива в двигателе.

Если упростить, реакцию сгорания топлива в двигателе можно описать так: кислород + топливо = вода + углекислый газ.

Вообще в камере двигателя внутреннего сгорания происходит несколько реакций, в которых задействованы топливо (углеводороды), воздух и искра зажигания. А точнее, не просто топливо - топливно-воздушная смесь из углеводородов, кислорода, азота. Перед зажиганием смесь сжимается и нагревается.

Сгорания смеси происходит в доли секунды, в итоге связь между атомами водорода и углерода разрушается. Благодаря этому высвобождается большое количество энергии, которая приводит в движение поршень, а тот - коленчатый вал.

В дальнейшем атомы водорода и углерода соединяются с атомами кислорода, образуется вода и углекислый газ.

В идеале реакция полного сгорания топлива должна выглядеть так: CnH2n + 2 + (1,5n + 0,5) O2 = nCO2 + (n + 1) H2O. В реальности же двигатели внутреннего сгорания не столь эффективны. Допустим, если кислорода при реакции не хватает незначительно, в результате реакции образуется СО. А при большей нехватки кислорода образуется сажа (С).

Образование налета на металлах в результате окисления (ржавчина на железе, патина на меди, потемнение серебра) - тоже из категории бытовых химических явлений.

Возьмем железо для примера. Ржавления (окисления) происходит под воздействием влаги (влажность воздуха, прямой контакт с водой). Результатом этого процесса становится гидроксид железа Fe2O3 (точнее, Fe2O3 * H2O). Вы можете увидеть его в виде рыхлого, шероховатого, оранжевого или красно коричневого налета на поверхности металлических изделий.

Другим примером может послужить зеленый налет (патина) на поверхности изделий из меди и бронзы. Он образуется со временем под воздействием атмосферного кислорода и влажности: 2Cu + O2 + H2O + CO2 = Cu2CO5H2 (или CuCO3 * Cu (OH) 2). Полученный в результате основной карбонат меди встречается и в природе - в виде минерала малахита.

И еще один пример медленной окислительной реакции металла в бытовых условиях - это образование темного налета сульфида серебра Ag2S на поверхности серебряных изделий: украшений, столовых приборов и т.п.

«Ответственность» за его возникновения несут частицы серы, которые в виде сероводорода присутствуют в воздухе, которым мы с вами дышим. Потемнеть серебро может и при контакте с сирковмистнимы пищевыми продуктами (яйцами, например). Реакция же выглядит так: 4Ag + 2H2S + O2 = 2Ag2S + 2H2O.

Вернемся на кухню. Здесь можно рассмотреть еще несколько интересных химических явлений: образование накипи в чайнике одно из них.

В бытовых условиях нет химически чистой воды, в ней всегда в разной концентрации растворенные соли металлов и другие вещества. Если вода насыщена солями кальция и магния (гидрокарбонатами), ее называют жесткой. Чем выше концентрация солей, тем более жесткой является вода.

Когда такая вода нагревается, эти соли подвергаются разложению на углекислый газ и нерастворимый осадок (СаСО3 и MgСО3). Эти твердые отложения вы и можете наблюдать, заглянув в чайник (а также взглянув на нагревательные элементы стиральных и посудомоечных машинок, утюгов).

Кроме кальция и магния (из которых следует карбонатный накипь), в воде также часто присутствует железо. В ходе химических реакций гидролиза и окисления с него образуются гидроксиды.

Кстати, собравшись избавиться от накипи в чайнике, можно наблюдать еще один пример интересной химии в быту: с отложениями хорошо справляются обычный столовый уксус и лимонная кислота. Чайник с раствором уксуса / лимонной кислоты и воды кипятят, после чего накипь исчезает.

А без другого химического явления не было вкусных маминых пирогов и булочек: речь о гашения соды уксусом.

Когда мама гасит соду в ложке уксусом, происходит вот такая реакция: NaHCO3 + CH3COOH = CH3COONa + H2O + CO2. Полученный в ее результате углекислый газ стремится покинуть тесто - и тем самым изменяет его структуру, делает пористым и рыхлым.

Кстати, можете рассказать маме, что гасить соду совсем не обязательно - она ​​и так прореагирует, когда тесто попадет в духовку. Реакция, правда, будет проходить немного хуже, чем при тушении соды. Но при температуре от 60 градусов (а лучше 200) происходит разложение соды на карбонат натрия, воду и все тот же углекислый газ. Правда, вкус готовых пирогов и булочек может оказаться хуже.

Список бытовых химических явлений не менее впечатляющий, чем список таких явлений в природе. Благодаря им у нас есть дороги (изготовление асфальта - это химические явление), дома (обжиг кирпича), красивые ткани для одежды (покраска). Если задуматься об этом, становится четко понятно, насколько многогранна и интересна наука химия. И сколько пользы можно извлечь из того ее законов.

1. Тесное соприкосновение реагирующих веществ (необходимо): H 2 SO 4 + Zn = ZnSO 4 + H 2 2. Нагревание (возможно) а) для начала реакции б) постоянно Классификация химических реакций по различным признакам 1.По наличию границы раздела фаз все химические реакции подразделяются на гомогенные и гетерогенные Химическая реакция, протекающая в пределах одной фазы, называется гомогенной химической реакцией . Химическая реакция, протекающая на границе раздела фаз, называется гетерогенной химической реакцией . В многостадийной химической реакции некоторые стадии могут быть гомогенными, а другие - гетерогенными. Такие реакции называются гомогенно-гетерогенными . В зависимости числа фаз, которые образуют исходные вещества и продукты реакции, химические процессы могут быть гомофазными (исходные вещества и продукты находятся в пределах одной фазы) и гетерофазными (исходные вещества и продукты образуют несколько фаз). Гомо- и гетерофазность реакции не связана с тем, является ли реакция гомо- или гетерогенной . Поэтому можно выделить четыре типа процессов: Гомогенные реакции (гомофазные) . В реакциях такого типа реакционная смесь является гомогенной, а реагенты и продукты принадлежат одной и той же фазе. Примером таких реакций могут служить реакции ионного обмена, например, нейтрализация раствора кислоты раствором щёлочи: Гетерогенные гомофазные реакции . Компоненты находятся в пределах одной фазы, однако реакция протекает на границе раздела фаз, например, на поверхности катализатора. Примером может быть гидрирование этилена на никелевом катализаторе: Гомогенные гетерофазные реакции . Реагенты и продукты в такой реакции существуют в пределах нескольких фаз, однако реакция протекает в одной фазе. Так может проходить окисление углеводородов в жидкой фазе газообразным кислородом. Гетерогенные гетерофазные реакции . В этом случае реагенты находятся в разном фазовом состоянии, продукты реакции также могут находиться в любом фазовом состоянии. Реакционный процесс протекает на границе раздела фаз. Примером может служить реакция солей угольной кислоты (карбонатов) с кислотами Бренстеда: 2.По изменению степеней окисления реагентов[править | править вики-текст] В данном случае различают Окислительно-восстановительные реакции, в которых атомы одного элемента (окислителя) восстанавливаются , то есть понижают свою степень окисления, а атомы другого элемента (восстановителя) окисляются , то есть повышают свою степень окисления. Частным случаем окислительно-восстановительных реакций являются реакции конпропорционирования, в которых окислителем и восстановителем являются атомы одного и того же элемента, находящиеся в разных степенях окисления. Пример окислительно-восстановительной реакции - горение водорода (восстановитель) в кислороде (окислитель) с образованием воды: Пример реакции конпропорционирования - реакция разложения нитрата аммония при нагревании. Окислителем в данном случае выступает азот (+5) нитрогруппы, а восстановителем - азот (-3) катиона аммония: Не относятся к окислительно-восстановительным реакции, в которых не происходит изменения степеней окисления атомов, например: 3.По тепловому эффекту реакции Все химические реакции сопровождаются выделением или поглощением энергии. При разрыве химических связей в реагентах выделяется энергия, которая в основном идёт на образование новых химических связей. В некоторых реакциях энергии этих процессов близки, и в таком случае общий тепловой эффект реакции приближается к нулю. В остальных случаях можно выделить: экзотермические реакции, которые идут с выделением тепла, (положительный тепловой эффект) СН 4 + 2О 2 = СО 2 + 2Н 2 О + энергия (свет, тепло); СаО + Н 2 О = Са(ОН) 2 + энергия (тепло). эндотермические реакции в ходе которых тепло поглощается (отрицательный тепловой эффект) из окружающей среды. Са(ОН) 2 + энергия (тепло) = СаО + Н 2 О Тепловой эффект реакции (энтальпию реакции, Δ r H), часто имеющий очень важное значение, можно вычислить по закону Гесса, если известны энтальпии образования реагентов и продуктов. Когда сумма энтальпий продуктов меньше суммы энтальпий реагентов (Δ r H < 0) наблюдается выделение тепла, в противном случае (Δ r H > 0) - поглощение. 4.По типу превращений реагирующих частиц[править | править вики-текст] соединения: разложения: замещения: обмена (в т.ч. тип реакции-нейтрализация): Химические реакции всегда сопровождаются физическими эффектами: поглощением или выделением энергии, изменением окраски реакционной смеси и др. Именно по этим физическим эффектам часто судят о протекании химических реакций. Реакция соединения -химическая реакция, в результате которой из двух или большего числа исходных веществ образуется только одно новое.В такие реакции могут вступать как простые, так и сложные вещества. Реакция разложения -химическая реакция, в результате которой из одного вещества образуется несколько новых веществ. В реакции данного типа вступают только сложные соединения, а их продуктами могут быть как сложные, так и простые вещества Реакция замещения -химическая реакция,в результате которой атомы одного элемента, входящие в состав простого вещества, замещают атомы другого элемента в его сложном соединении. Как следует из определения, в таких реакциях одно из исходных веществ должно быть простым, а другое сложным. Реакции обмена - реакция, в результате которой два сложных вещества обмениваются своими составными частями 5.По признаку направления протекания химические реакции делятся на необратимые и обратимые Необратимыми называют химические реакции, протекающие лишь в одном направлении("слева направо "), в результате чего исходные вещества превращаются в продукты реакции. О таких химических процессах говорят, что они протекают "до конца".К ним относят реакции горения , а также реакции, сопровождающиеся образованием малорастворимых или газообразных веществ Обратимыми называются химические реакции, протекающие одновременно в двух противоположных направлениях("слева направо" и "справа налево").В уравнениях таких реакций знак равенства заменяется двумя противоположно направленными стрелками.Среди двух одновременно протекающих реакций различают прямую(протекает "слева направо") и обратную (протекает "справа налево").Поскольку в ходе обратимой реакции исходные вещества одновременно и расходуются и образуются, они не полностью превращаются в продукты реакции.Поэтому об обратимых реакциях говорят, что они протекают "не до конца". В результате всегда образуется смесь исходных веществ и продуктов взаимодействия. 6. По признаку участия катализаторов химические реакции делятся на каталитические и некаталитические Каталитическими2SO 2 + O 2 → 2SO 3 (катализатор V 2 O 5) называют реакции, протекающие в присутствии катализаторов.В уравнениях таких реакций химическую формулу катализатора указывают над знаком равенства или обратимости, иногда вместе с обозначением условий протекания. К реакциям данного типа относятся многие реакции разложения и соединения. Некаталитическими2NO+O2=2NO 2 называются многие реакции, протекающие в отсутствие катализаторов.Это, например, реакции обмена и замещения.

Физические изменения не связаны с химическими реакциями и созданием новых продуктов, например, таяние льда. Как правило, такие преобразования являются обратимыми. Кроме примеров физических явлений, в природе и в повседневной жизни встречаются также химические трансформации, при которых образуются новые продукты. Такие химические явления (примеры будут рассмотрены в статье) являются необратимыми.

Химические изменения

Химические изменения можно рассматривать как любое явление, которое позволяет ученым измерять химические свойства. Многие реакции также являются примерами химических явлений. Хотя не всегда легко сказать, что произошло именно химическое изменение, есть некоторые контрольные признаки. Что такое химические явления? Приведем примеры. Это может быть изменение цвета вещества, температуры, образование пузырьков или (в жидкостях) выпадение осадка. Можно привести следующие примеры химических явлений в жизни:

  1. Ржавчина на железе.
  2. Сжигание древесины.
  3. Метаболизм пищи в организме.
  4. Смешивание кислоты и щелочи.
  5. Приготовление яйца.
  6. Переваривание сахара амилазой в слюне.
  7. Смешивание в выпечке соды и уксуса для получения газообразного диоксида углерода.
  8. Выпекание пирога.
  9. Гальванизация металла.
  10. Батарейки.
  11. Взрыв фейерверков.
  12. Гниющие бананы.
  13. Образование молочно-кислых продуктов.

И это далеко не весь список. Можно рассмотреть некоторые из этих пунктов более подробно.

Наружный огонь с использованием дерева

Огонь - это тоже пример химического явления. Это быстрое окисление материала в экзотермическом химическом процессе горения, высвобождение тепла, света и различных продуктов реакции. Огонь является горячим, потому что происходит конверсия слабой двойной связи в молекулярном кислороде O 2 к более сильным связям в продуктах сгорания углекислого газа и воды. Выделяется большая энергия (418 кДж на 32 г O 2); энергии связи топлива играют лишь второстепенную роль здесь. В определенный момент реакции горения, называемой точкой воспламенения, образуются пламя.

Это видимая часть огня, которая состоит в основном из двуокиси углерода, водяного пара, кислорода и азота. Если температура достаточно высокая, газы могут стать ионизированными для получения плазмы. В зависимости от того, какие вещества загораются и какие примеси подаются снаружи, цвет пламени и интенсивность огня будут разными. Огонь в его наиболее распространенной форме может привести к пожару, который может нанести физический ущерб при горении. Огонь является важным процессом, который затрагивает экологические системы по всему миру. Положительные эффекты пожара включают стимулирующий рост и поддержание различных экологических систем.

Ржавчина

Так же, как и огонь, процесс ржавления является также окислительным процессом. Вот только не таким быстропротекающим. Ржавчина представляет собой оксид железа, обычно красный оксид, образованный окислительно-восстановительной реакцией железа и кислорода в присутствии воды или воздуха. Несколько форм ржавчины различаются как визуально, так и спектроскопией и формируются при разных обстоятельствах. Учитывая достаточное время, кислород и воду, всякая масса железа в конечном итоге полностью превращается в ржавчину и разлагается. Поверхностная ее часть является шелушащейся и рыхлой, и она не защищает подстилающее железо, в отличие от образования патины на медных поверхностях.

Такой пример химического явления, как ржавление, является общим термином для коррозии железа и его сплавов, таких как сталь. Многие другие металлы подвергаются аналогичной коррозии, но полученные оксиды обычно не называются ржавчиной. Существуют другие формы этой реакции как результат реакции между железом и хлоридом в среде, лишенной кислорода. Примером может служить арматура, используемая в подводных бетонных столбах, которая генерирует зеленую ржавчину.

Кристаллизация

Еще одним примером химического явления является кристаллический рост. Это процесс, в котором ранее существовавший кристалл становится больше по мере увеличения количества молекул или ионов в их положениях в кристаллической решетке. Кристалл определяется как атомы, молекулы или ионы, расположенные в упорядоченном повторяющемся образце, кристаллической решетке, распространяющейся во всех трех пространственных измерениях. Таким образом, рост кристаллов отличается от роста капли жидкости тем, что во время роста молекулы или ионы должны попадать в правильные положения решетки, чтобы упорядоченный кристалл мог расти.

Когда молекулы или ионы попадают в положение, отличное от положений в идеальной кристаллической решетке, образуются дефекты кристалла. Как правило, молекулы или ионы в кристаллической решетке улавливаются в том смысле, что они не могут двигаться от своих положений, и поэтому рост кристаллов часто необратим, так как когда молекулы или ионы встали на место в растущей решетке, они фиксируются в ней. Кристаллизация является обычным процессом как в промышленности, так и в естественном мире, и кристаллизация обычно понимается как состоящая из двух процессов. Если ранее не существовало кристалла, то новый кристалл должен зарождаться, а затем он должен подвергаться росту.

Химическое происхождение жизни

Химическое происхождение жизни относится к условиям, которые могли бы существовать и, следовательно, способствовали появлению первых дублируемых форм жизни.

Главным примером химических явлений в природе является сама жизнь. Считается, что совокупность физических и химических реакций смогла привести к появлению первых молекул, которые, репродуцируясь, привели к появлению жизни на планете.