Монохроматизация излучения. Большая советская энциклопедия - монохроматический свет

Chromatos - цвет), электромагнитная волна одной определенной и строго постоянной частоты из диапазона частот, непосредственно воспринимаемых человеческим глазом (см. Свет). Происхождение термина «М. с.» связано с тем, что различие в частоте световых волн воспринимается человеком как различие в цвете. Однако по своей физической природе электромагнитные волны видимого диапазона не отличаются от волн др. диапазонов (инфракрасного, ультрафиолетового, рентгеновского и т. д.), и по отношению к ним также используют термин «монохроматический» («одноцветный»), хотя никакого ощущения цвета эти волны не дают. Понятие «М. с.» (как и «монохроматическое излучение» вообще) является идеализацией. Теоретический анализ показывает, что испускание строго монохроматической волны должно продолжаться бесконечно долго. Реальные же процессы излучения ограничены во времени, и поэтому в них одновременно испускаются волны всех частот, принадлежащих некоторому интервалу. Чем уже этот интервал , тем «монохроматичнее» излучение . Так, очень близко к . . излучение отдельных линий спектров испускания свободных атомов (например, атомов газа). Каждая из таких линий соответствует переходу атома из состояния m (с большей энергией) в состояние n (с меньшей энергией). Если бы энергии этих состояний имели строго фиксированные значения Em и En, атом излучал бы М. С. частоты nmn = 2pwmn = (Em - En)/h (см. Излучение). Здесь h - Планка постоянная, равная 6,624 ?10-27 эрг ?сек. Однако в состояниях с большей энергией атом может находиться лишь малое время Dt (обычно 10-8 сек - т. . время жизни на энергетическом уровне), , согласно неопределенностей соотношению для энергии и времени жизни квантового состояния (DЕDt ? h), энергия , например, состояния m может иметь любое значение между Em + DE и Em - DЕ. За счет этого излучение каждой линии спектра приобретает «разброс» частот Dnmn = 2DЕ/h = 2/Dt (подробнее см. Ширина спектральных линий). При испускании света (или электромагнитного излучения др. диапазонов) реальными источниками в них происходит множество переходов между различными энергетическими состояниями; поэтому в таком излучении присутствуют волны многих частот. Приборы, с помощью которых из света выделяют узкие спектральные интервалы (излучение, близкое к М. с.), называют монохроматорами. Чрезвычайно высокая монохроматичность характерна для излучения некоторых типов лазеров (его спектральный интервал может быть значительно уже, чем у линий атомных спектров). Лит.: Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973; Калитеевский Н. И., Волновая оптика , М., 1971. . Н. Каперский.

Монохроматическое излучение Монохроматическое излучение, электромагнитное излучение (электромагнитная волна) одной определенной частоты. Подробнее см. Монохроматический свет.

Монохроматический Свет (от моно... и греч. chroma, род. падеж chromatos - цвет), электромагнитная волна одной определенной и строго постоянной частоты из диапазона частот, непосредственно воспринимаемых человеческим глазом (см. Свет). Происхождение термина "Монохроматический свет" связано с тем, что различие в частоте световых волн воспринимается человеком как различие в цвете. Однако по своей физической природе электромагнитные волны видимого диапазона не отличаются от волн др. диапазонов (инфракрасного, ультрафиолетового, рентгеновского и т. д.), и по отношению к ним также используют термин - "монохроматический" ("одноцветный"), хотя никакого ощущения цвета эти волны не дают.

Понятие "Монохроматический свет" (как и "монохроматическое излучение" вообще) является идеализацией. Теоретический анализ показывает, что испускание строго монохроматические волны должно продолжаться бесконечно долго. Реальные же процессы излучения ограничены во времени, и поэтому в них одновременно испускаются волны всех частот, принадлежащих некоторому интервалу. Чем уже этот интервал, тем "монохроматичнее" излучение. Так, очень близко к монохроматическому свету излучение отдельных линий спектров испускания свободных атомов (например, атомов газа). Каждая из таких линий соответствует переходу атома из состояния т (с большей энергией) в состояние п (с меньшей энергией). Если бы энергии этих состояний имели строго фиксированные значения Е m и Е n , атом излучал бы монохроматический свет частоты ν mn = 2πω nm = (Е m - E n)/h (см. Излучение). Здесь h - Планка постоянная, равная 6,624*10 -27 эрг -сек. Однако в состояниях с большей энергией атом может находиться лишь малое время Δt (обычно 10 -8 сек - т. н. время жизни на энергетическом уровне), и, согласно неопределенностей соотношению для энергии и времени жизни квантового состояния (ΔEΔt≥h), энергия, например, состояния m может иметь любое значение между Еm + ΔЕ и Еm - ΔЕ. За счет этого излучение каждой линии спектра приобретает "разброс" частот Δν mn = 2ΔE/h = 2/Δt (подробнее см. Ширина спектральных линий).

При испускании света (или электромагнитного излучения др. диапазонов) реальными источниками в них происходит множество переходов между различными энергетическими состояниями; поэтому в таком излучении присутствуют волны многих частот. Приборы, с помощью которых из света выделяют узкие спектральные интервалы (излучение, близкое к монохроматическому свету), называются монохроматорами. Чрезвычайно высокая монохроматичность характерна для излучения некоторых типов лазеров (его спектральный интервал может быть значительно уже, чем у линий атомных спектров).

МОНОХРОМАТИЧЕСКОЕ ИЗЛУЧЕНИЕ

МОНОХРОМАТИЧЕСКОЕ ИЗЛУЧЕНИЕ

(от греч. monos - один, единый и chroma - ), электромагнитное одной определённой и строго постоянной частоты. Происхождение термина «М. и.» связано с тем, что различие в частоте световых волн воспринимается человеком как различие в цвете. Однако по своей природе видимого диапазона, лежащие в интервале 0,4-0,7 мкм, не отличаются от эл.-магн. волн др. диапазонов (ИК, УФ, рентгеновского и т. д.), по отношению к к-рым также используют термин «монохроматический» (одноцветный), хотя никакого ощущения цвета эти не дают.

Т. к. идеальным М. и. не может быть по самой своей природе, то обычно монохроматическим считается излучение с узким . интервалом, к-рый можно приближённо характеризовать одной частотой (или длиной волны).

Приборы, с помощью к-рых из реального излучения выделяют узкие спектр. интервалы, наз. монохроматорами. Чрезвычайно высокая монохроматичность характерна для излучения нек-рых типов лазеров (ширина спектр. интервала излучения достигает величины 10-6 ?, что значительно уже, чем ширина линий ат. спектров).

Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

МОНОХРОМАТИЧЕСКОЕ ИЗЛУЧЕНИЕ

(от греч. monos - один и chroma, род. падеж chrOmatos - цвет) - эл.-магн. излучение одной определённой и строго постоянной частоты. Происхождение термина "М. и." связано с тем, что различие в частоте световых волн воспринимается человеком как различие в цвете. Однако по своей природе электромагнитные волны видимого диапазона, лежащие в интервале 0,4 - 0,7 мкм, не отличаются от эл.-магн. волн др. диапазонов (ИК-, УФ-, рентгеновского и т. д.), по отношению к к-рым также используют термин "монохроматический" (одноцветный), хотя никакого ощущения цвета эти волны не дают.

Теория эл.-магн. излучения, основанная на Максвелла уравнениях, описывает любое M. и. как гармония, колебание, происходящее с неизменной амплитудой и частотой в течение бесконечно долгого времени. Плоская монохроматич. волна эл.-магн. излучения служит примером полностью когерентного поля (см. Когерентность), параметры к-рого неизменны в любой точке пространства и известен закон их изменения во времени. Однако процессы излучения всегда ограничены во времени, а потому понятие M. и. является идеализацией. Реальное естеств. излучение обычно представляет собой сумму нек-рого числа монохроматич. волн со случайными амплитудами, частотами, фазами, поляризацией и направлением распространения. Чем уже интервал, к-рому принадлежат частоты наблюдаемого излучения, тем оно монохроматичнее. Так, излучение, соответствующее отд. линиям спектров испускания свободных атомов (напр., атомов разреженного газа), очень близко к M. и. (см. Атомные спектры); каждая из таких линий соответствует переходу атома из состояния т с большей энергией в состояние n с меньшей энергией. Если бы энергии этих состояний имели строго фиксиров. значения и , атом излучал бы M. и. частоты v тп = ()/h. Однако в состояниях с большей энергией атом может находиться лишь малое время Dt (обычно 10 -8 с - т. н.

время жизни на энергетич. уровне), и, согласно неопределённостей соотношению для энергии и времени жизни квантового состояния (D·Dt >= h), энергия, напр., состояния т может иметь любое значение между + + D и . Поэтому излучение каждой линии спектра соответствует интервалу частот Dv mn = D/h= = 1/Dt (подробнее см. в ст. Ширина спектральной линии).

T. к. идеальным M. и. не может быть по самой своей природе, то обычно монохроматическим считается излучение с узким спектральным интервалом, к-рый можно приближённо характеризовать одной частотой (или длиной волны).

Приборы, с помощью к-рых из реального излучения выделяют узкие спектральные интервалы, наз. моно - хроматорами. Чрезвычайно высокая монохроматичность характерна для излучения нек-рых типов лазеров (ширина спектрального интервала излучения достигает величины 10 -7 нм, что значительно уже, чем ширина линий атомных спектров).

Лит.: Боpн M., Вольф Э., Основы оптики, пер. с англ., 2 изд., M., 1973; Калитеевский H. И., Волновая , 2 изд., M., 1978. Л. H. Канарский.

MOHOXPOMATOP - спектральный оптич. прибор для выделения узких участков спектра оптич. излучения. M. состоит (рис. 1) из входной щели 1, освещаемой источником излучения, коллиматора 2, диспергирующего элемента 3, фокусирующего объектива 4 и выходной щели 5. Диспергирующий элемент пространственно разделяет лучи разных длин волн l, направляя их под разными углами f, и в фокальной плоскости объектива 4 образуется спектр - совокупность изображений входной щели в лучах всех длин волн, испускаемых источником. Нужный участок спектра совмещают с выходной щелью поворотом диспергирующего элемента; изменяя ширину щели 5, изменяют спектральную ширину dl выделенного участка.

Рис. 1. Общая схема монохроматора: 1 - входная щель, освещаемая источником излучения; 2 - входной ; 3 - испергирующий элемент; 4 - фокусирующий выходного коллиматора; 5 - выходная щель.


Диспергирующими элементами M. служат и дифракц. решётки. Их угл. дисперсия D = Df/Dl вместе с фокусным расстоянием f объектива 4 определяют линейную дисперсию Dl /Df = Df (Df - угл. разность направлений лучей, длины волн к-рых отличаются на Dl; Dl - расстояние в плоскости выходной щели, разделяющее эти лучи). Призмы дешевле решёток в изготовлении и обладают большой дисперсией в УФ-области. Однако их дисперсия существенно уменьшается с ростом l и для разных областей спектра нужны призмы из разных материалов. Решётки свободны от этих недостатков, имеют постоянную высокую дисперсию во всём оптич. диапазоне и при заданном пределе разрешения позволяют построить M. с существенно большим выходящим световым потоком, чем призменный M.

Осн. характеристиками M., определяющими выбор параметров его оптич. системы, являются: Ф" l , проходящий через выходную щель; предел разрешения dl*, т. е. наим. разность длин волн, ещё различимая в выходном излучении M., либо его разрешающая способность r, определяемая, как и для любого др. спектрального прибора, отношением l/dl*, а также объектива коллиматора А 0 . Разрешающая способность r, ширина выделяемого спектрального интервала dl и спектральное энергии излучения, прошедшего через выходную щель, определяются аппаратной функцией M., к-рую можно представить как потока лучистой энергии по ширине изображения входной щели (в плоскости выходной щели), если та освещается монохроматическим излучением.

Световой поток, выходящий из M., F" l = т l F l = т l В l S Wdl, где т l - коэф. пропускания M.; F l - световой поток, попадающий в M.; В l - спектральная входной щели; S - площадь выходной щели; W - телесный угол лучей фокусирующего объектива, сходящихся на выходной щели. Произведение S W. = S 0 W 0 . (индексы 0 относятся к входной щели) при прохождении светового потока через прибор остаётся постоянным (если световые пучки не срезаются к.-л. диафрагмами) и наз. геом. фактором прибора. T. к. W = pd 2 /4f 2 = pA 2 /4, где f , d и А - фокусное расстояние, диаметр и действующее относительное отверстие фокусирующего объектива, a S = hb (h - высота, b - ширина выходной щели), то При определении оптим. условий работы M. существен характер спектра источника света - линейчатый или сплошной, - к-рым освещается входная щель. В первом случае выходящий поток пропорционален ширине выходной щели, во втором случае - квадрату ширины щели b 2 , а также квадрату пропускаемого спектрального диапазона (dl) 2 ; при заданном dl выходящий поток пропорционален линейной дисперсии M.

Объективы M. (коллиматорный и фокусирующий) могут быть линзовыми или зеркальными. Зеркальные объективы пригодны в более широком спектральном диапазоне, чем линзовые, и, в отличие от последних, не требуют перефокусировки при переходе от одного выделяемого участка спектра к другому, что особенно удобно для ИК- и УФ-областей спектра.


Рис. 2. Автоколлимационная схема: 1 - зеркало, вра щением которого осуществляется спектра.


Рис. 3. z-образная симметричная схема: 1 - дифракционная решётка; 2 - сферическое зеркало.

Из большого кол-ва существующих оптич. схем M. можно выделить, помимо традиционных (рис. 1), автоколлимационные (рис. 2), z -образные (рис. 3), схемы с расположением щелей одна над другой либо просто с одной щелью, у к-рой верх. часть служит входной, а нижняя - выходной щелью, и пр. В тех случаях, когда особенно важно избежать попадания в выходную щель M. рассеянного света с длинами волн, далёкими от выделяемого участка спектра (напр., в спектрофото-метрии), применяют т. н. двойные M., представляющие собой два M., расположенных так, что , выходящий из первого M., попадает во второй и выходная щель первого служит входной щелью второго (рис. 4). В зависимости от взаимного расположения диспергирующих элементов в каждом из этих M. различают двойные M. со сложением и с вычитанием дисперсий. Приборы со сложением дисперсий позволяют не только во много раз снизить уровень рассеянного света на выходе, но и увеличить разрешающую способность M., а при заданном разрешении - повысить выходящий световой поток (т. е. расширить щели). Двойные M. с вычитанием дисперсий позволяют снизить уровень рассеянного света без увеличения разрешающей способности. В них на выходную щель приходит свет такого же спектрального состава, с каким он вышел из ср. щели. Такие M. менее светосильны, чем M. со сложением дисперсий, однако они позволяют проводить сканирование спектра перемещением ср. щели в плоскости дисперсии прибора, что очень удобно конструктивно для спектрофотометров, особенно скоростных. В ряде случаев, когда необходимо одновременное выделение неск. недалёких узких спектральных интервалов, применяют простые M. с несколькими выходными щелями, т. н. полихроматоры.

Работа с узкой полосой излучения обладает следующими преимуществами: 1) возрастает вероятность подчинения погло­щающей системы закону Бера (см. раздел 1.5.); 2)увеличивается селективность, поскольку вещества, поглощающие в других облас­тях спектра, мешают в меньшей степени; 3) если при выбранной длине волны поглощение велико, то при очень малом изменении концентрации наблюдается значительное изменение оптической плотности, что обусловливает высокую чувствительность.

Устройства для выделения части излучения основаны на ис­пользовании различных оптических явлений: интерференции, ди­фракции, поглощении света, дисперсии. Выделить абсолютно мо­нохроматическое излучение невозможно, на практике получают более или менее узкий интервал длин волн; этого достигают бездисперсионными (светофильтры) и дисперсионными (монохро-маторы) способами.

Важнейшими характеристиками этих устройств являются: 1)полоса пропускания - интервал длин волн, выходящих из моно-хроматора или светофильтра; ее характеризуют полушириной максимума пропускания; 2) разрешение - способность разделять соседние участки спектра, выражается отношением исследуемой длины волнык наименьшей разницемежду этой и соседней волнами, которые можно различить; 3) светосила - способ­ность пропускать излучение, в наиболее совершенных приборах она близка к 100 %; 4) дисперсия (для монохроматоров)- способ­ность разлагать излучение в спектр. Для ее характеристики ис­пользуют линейную дисперсию (где - расстояние между двумя линиями в спектре,разность их длин волн) или обратную величинуДисперсия зависит от материала призмы и конструкции монохроматора.

Светофильтры обычно используются в видимой части спек­тра, они бывают нескольких типов.

Абсорбционные светофильтры представляют собой цвет­ные стекла или стеклянные пластинки, между которыми помещен краситель, суспендированный в желатине. Первые обычно более термически устойчивы. Абсорбционные светофильтры пропускают излучение ограниченного интервала длин волн и поглощают излу­чение всех остальных, они характеризуются небольшой прозрач­ностью (Т = 0,1) и довольно широкой полосой пропускания (30 нм и более).

Характеристики интерференционных светофильтров значи­тельно лучше. Светофильтр состоит из двух тончайших полупро­зрачных слоев серебра, между которыми находится слой диэлек­трика. В результате интерференции света из светофильтра будут выходить лучи с длиной волны, равной удвоенной толщине ди­электрического слоя. Прозрачность интерференционных свето­фильтров составляет: Т = 0,3 ^ 0,8 ; эффективная ширина про­пускания обычно не превышает 5-^10 нм. Для еще большего сужения полос пропускания пользуются системой двух последова­тельных интерференционных светофильтров.



При маркировке светофильтров указывают длину волны в максимуме пропускания и ширину полосы пропускания.

Монохроматор - это устройство, разлагающее излучение на составляющие его волны разной длины. Все монохроматоры со­стоят из диспергирующего устройства и связанной с ним системы линз, зеркал, входных и выходных щелей. Диспергирующими эле­ментами служат призмы и дифракционные решетки.

В призменном монохроматоре излучение проходит через входящую щель, сводится линзой в параллельный пучок и затем попадает под углом на поверхность призмы. На обеих гранях призмы происходит преломление (фиолетовый свет преломляется больше всего, красный свет - меньше всего); разложенное излучение фокусируется на слегка изогнутой поверхности, на которой расположена выходная щель. Поворотом призмы можно направить в эту щель излучение с требуемой длиной волны.

В видимой части спектра в качестве материала для призм используют стекло, в ультрафиолетовой - кварц из-за поглощения стеклом УФ - излучения. В инфракрасной спектроскопии использу­ют призмы из Li F, NaCl, KBr и других галогенидов щелочных ме­таллов (пробу помещают перед монохроматором, что уменьшает рассеянное излучение). Эти же материалы используют для изго­товления кювет. Кюветы для измерений в ультрафиолетовой и видимой областях спектра полностью изготовлены из кварца или стекла; кюветы, используемые для измерений в инфракрасной области, имеют оконца из монокристаллов галогенидов щелочных металлов.

Дифракционные решетки изготавливают нанесением парал­лельных штрихов на стекло или другой прозрачный материал (до 6000 штрихов на 1 см). При освещении дифракционной решетки потоком излучения, прошедшим через входную щель, каждый штрих становится источником излучения. В результате интерфе­ренции многочисленных потоков излучение разлагается в спектр.

Ширина полосы пропускания монохроматоров достигает 1,5 нм.

Излучение (радиация) является одной из форм существования материи в виде электромагнитного поля. Ха­рактерной особенностью излучения является корпуску­лярно-волновой дуализм.

Фотон - элементарная частица излучения, энергия которой (квант) є равна Им, где И = 6,626 10-34 Дж-с - постоянная Планка: v - частота ихпучепия, Гц.

В вакууме фотоны движутся со скоростью сQ = = 2,9979 10х м/с (скорость света).

Корпускулярные свойства фотона определяются его массой тф =с/Cq, и импульсом P§=hv/с. Фотон дви­жется со скоростью cq - максимальной скоростью, с которой может двигаться элементарная частица мате­рии: тф = то /- (ьс)2 . Скорость движения фотона

) = і1, очевидно, что фотон находится всегда в движении и массой покоя то не обладает.

Волновые свойства фотона описываются частотой и. ишной волны. Длина волны фотона в вакууме

Генераторами излучения являются движущиеся мо­лекулы и атомы вещества. Монохроматическое (одно­родное) излучение получить на практике нельзя. При­нято под монохроматическим излучением понимать сово­купность выделяемых источником излучения фотонов, обладающих практически одинаковой длиной волны.

Сложное излучение представляют состоящим из со­вокупности монохроматических излучений. Светотех­ника имеет дело с оптическим излучением, т. е. с элек­тромагнитным излучением с длинами волн примерно от 1 нм до 1 мм, лежащими в област и между рентгенов­скими лучами и радиоихпученисм.

Оптическая область спектра делится па ультрафио­летовую, видимую и инфракрасную.

Ультрафиолетовое излучение - ОИ. длины волн мо­нохроматических составляющих которого лежат в пре­делах от 1 до 380 нм. МКО предлагает следующее деле­ние УФ-излучений с длинами волн от 100 до 400 нм: УФ-А - от 315 ло 400 нм; УФ-В - от 280 до 315 нм; УФ-С - от 100 до 280 нм.

Видимое изучение (свет) - излучение, которое, по­падая на сетчагую оболочку глаза, может вызвать зрительное ощущение (ощущение - превращение энергии внешнего раздражителя в факт сознания). Видимое из­лучение имеет длины волн монохроматических состав­ляющих в пределах 380-780 нм.

Инфракрасное изучение имеет длины воли монохро­матических составляющих, большие длин волн види­мого излучения. МКО предлагает следующее деление ИК области ихпучепий: ИК-А - от 780 до 1400 нм; ИК-В - от 1400 до 3000 нм; ИК-С - от 3000 до 106 им (от 3 мкм до 1 мм).

Спектр излучения - совокупность монохроматических излучений, входящих в состав сложно излучения. Спектр излучения может описываться графической, аналитической или табличной зависимостями. Источ­ники излучения моїут иметь сплошной, полосатый, ли­нейчатый спектр или спектр, имеющий сплошную и линейчатую составляющие.

Сплошной спектр - спектр, у которого монохрома­тические составляющие заполняют без разрывов ин­тервал длин волн, в пределах которого происходит из­лучение.

Полосатый спектр - спектр, монохроматические составляющие которого образуют дискретные группы (полосы), состоящие из множества тесно расположен­ных монохроматических излучений.

Линейчатый спектр - спектр, состоящий из отдель­ных, пе примыкающих друг к друїу монохроматиче­ских излучений.

Поток излучения Ф(> - мощность излучения, т. е.

ФР(^., dk)=Qe(X, <1К) / dt, (1.1)

где Qe, Qe(X, cfk) - энергии сложного и монохромати­ческого излучений, испускаемые за время dt Фг,

Согласно термину 845-01-03 Международного светотехнического словаря 1261, за нижчий предел видимого излучения при­нимается диапазон 360- 400 нм, а за верхний предел - 760-830 нм.

Фе(А, dk) - потоки сложного и монохроматического излучений. Вт.

Монохроматический поток излучения иногда изме­ряется также числом квантов в единицу времени.

Для описания распределения потока излучения по спектру пользуются спектральной плотностью потока излучения

ФеХ=Фе(, dk)/dk. (1.2)

Во многих случаях размеры источника излучения намного меньше расстояния от него до облучаемого объекта, поэтому правомочно рассматривать условный точечный источник излучения, т. е. такой, размеры кото­рого настолько малы по сравнена с расстоянием до приемника, что ими можно пренебречь при расчетах. Если принять за точечный источник излучения равно­мерно излучающий круг диаметром d, то поіреппюсть при расчетах в зависимости от расстояния I от круга до приемпика составляет около 9% при I/d = 3 и около 4% при I / d = 5.

Излучение источника распространяется в некото­ром телесном угле.

Телесный угол £2 - часть пространства, ограничен­ная незамкнутой поверхностью. Часто используются телесные углы, ограниченные разными коническими поверхностями (рис. 1.1). Мерой телесного угла с вер­шиной в центре сферы является отношение площади сферической поверхности dA, на которую он опирает­ся, к квадрату радиуса сферы г. За единицу телесного угла - стерадиан (ср) - принят центральный телесный угол, вырезающий участок сферы, площадь которого

равна квадрату ее радиуса. Элементарный зональный телесный угол dQ. ограничен двумя соосными кониче­скими поверхностями, образующие которых сметены на угол da: dSi = dA / г2 = 2л sin a da.

Зо! Шьный телесный угол Дй, для которого «2 - ct| = а2