Космос, Вселенная. Галактики Вселенной


Спиральная структура галактик

Спиральные ветви (рукава) - характерная особенность т.н. спиральных галактик, к к-рым принадлежит и наша . Ветви содержат сравнительно малую часть всех звезд галактики, но они явл. одним из наиболее заметных галактич. образований, т.к. в них сосредоточены почти все горячие звезды высокой светимости. Звезды этого типа относят к молодым, поэтому спиральные ветви можно считать местом образования звезд. Кроме молодых звезд в рукавах сосредоточена большай часть межзвездного газа галактики, из к-рого, по совр. представлениям, и образуются звезды. По характеру спиральных ветвей и по нек-рым др. особенностям спиральные галактики делятся на классы. В галактиках класса Sa (по классификации Хаббла, см. ) ветви относительно тонки (200-300 пк) и туго навиты, у галактик класса Sc они более размыты (диффузны) и круто удаляются от центарльной области. К спиральным галактикам близки галактики с перемычкой (баром), от концов к-рой обычно отходят спиральные ветви. Одна из распространенных классификаций спиральных галактик принадлежит франц. астроному Ж. Вокулеру, она приведена на рис. 1. Буквы A, B, AB характеризуют семейства спиральных галактик. SA обозначает нормальную спиральную галактику, SB - с перемычкой (баром), SAB - переходные формы. Кроме семейств, как видно из рис. 1, учитываются разновидности (кольцевая - r , спиральная s , смешанная - rs ).

Газ в спиральных рукавах состоит в основном из водорода. Обычно он практически неионизован (нейтральный водород, HI), но вокруг горячих звезд водород ионизован (). Газ часто образует плотные диффузные туманности, также служащие ориентиром при определении вида спиральных ветвей. Еще одним признаком ветвей явл. рассеянная в газе , обнаруживаемая по производимому ею поглощению. Она видна как тонкая темная полоса по внутреннему (ближе к центру галактики) краю спиральной ветви. Кроме того, в рукавах наблюдаются тонкие полоски, пересекающие рукава (рис. 2) и отдельные темные массы. Концентрация звезд, образующих галактич. диск, тоже несколько увеличивается в ветвях, но не так сильно, как концентрация газа.

Звезды, газ и др. объекты галактич. диска движутся по орбитам, близким к круговым. Экспериментально установлено, что угловая скорость этого движения как ф-ция радиуса, т.е. , убывает с удалением от центра галактики. При таком характере вращения большие газовые облака или др. протяженные образования растягиваются и становятся похожими на часть спиральной ветви. Однако спиральные ветви не могли возникнуть таким путем. Дифференциальное вращение способно создать структуры, похожие на наблюдаемые рукава, меньше чем за 10 9 лет. В течение неск. оборотов Галактики, возраст к-рой превышает 10 10 лет, такие структуры должны были разрушиться, пространственнное распределение водорода, пыли и горячих звезд стать нерегулярным, чего в большинстве случаев не наблюдается.

Б. Линдблад (Швеция) первым высказал идею о том, что спиральные ветви могут быть волнами плотности. В 1964 г. Ц. Лин и Ф. Шу (США) показали, что в галактиках действительно могут существовать волны плотности спиралевидной формы, вращающиеся с угловой скоростью (т.е. форма фронта таких волн не искажается дифференциальным вращением галаактич. диска) и распространяющиеся по радиусу с определенной групповой скоростью v гр. Поскольку в Галактике газа мало (2-5%), то волны распространяются по звездному населению, в к-ром они могут возбуждаться, а газ уже реагирует на возмущение , связанного с волнами, бегущими по системе звезд, т.е. его движение в гравитац. поле рукавов явл. несамосогласованным.

Галактики представляют собой т.н. бесстолкновительные звездные системы, т.к. время между двумя последовательными сближениями к.-л. звезды с др. звездой на 3-4 порядка больше возраста галактики. Поэтому возможность распространения волн в таких системах довольно необычна. Здесь упругость, необходимая для распространения волн плотности, обусловлена силами Кориолиса, приводящими к эпициклическому движению звезд, т.е. в конечном счете - вращению системы.

В волне концентрация звезд увеличивается незначительно (соответствующее изменение гравитац. потенциала 10-20%). Однако реакция межзвездного газа даже на столь значительное изменение гравитац. потенциала галактики велика: разгоняясь в поле спиральной волны звездной плотности, газ приобретает сверхзвуковую скорость и сжимается в неск. раз. Это может привести к возникновению глобальной (охватывающей большую часть диска) ударной волны в межзвездном газе. Одним из наблюдательных проявлений торможения газа в ударной волне (газ догоняет при своем галактич. движении рукава и затем тормозится) явл. темные полосы плотного газа с пылью на внутр. кромке спиральных рукавов (рис. 2). Сжатие газа может служить спусковым механизмом (триггером) для образования звезд. Действительно, индикаторами спиральной структуры обычно служат молодые OB-звезды и их ассоциации, зоны HII, остатки вспышек сверхновых, молекулярные темные облака, H 2 O-мазеры, источники -излучения (см. ). При протекании межзвездного газа через спиральные рукава в нем могут происходить своего рода фазовые переходы с образованием облачной структуры. Это проливает свет на происхождение сосуществующих одновременно различных фаз (холодной, теплой, горячей) межзвездного газа.

Волновая теория спиральной структуры галактик разработана достаточно детально и допускает количественное сравнение с наблюдениями. Однако имеется ряд нерешенных проблем. Регулярный спиральный узор наблюдается далеко не во всех галактиках, часто видна довольно нерегулярная структура, состоящая из многих коротких образований, к-рые лишь "в целом" формируют подобие спиральных рукавов. Регулярный глобальный спиральный узор наблюдается обычно у галактик, имеющих бар, и у галактик со "спутниками" (рис. 2). В этих случаях регулярная структура находит объяснение. Так, имеющийся в центре галактики бар действует как генератор, возбуждающий и поддерживающий волны плотности. Галактика-спутник, как показывают расчеты на ЭВМ, также может возбуждать спиральные волны плотности в осн. галактике, благодаря возникающим здесь приливным силам.

Несмотря на то что волновая интерпретация спирального узора галактик явл. практически общепринятой, в рамках самой волновой теории существуют точки зрения, окончательный выбор между к-рыми могут помочь сделать только наблюдения. Если Галактику со всеми ее подсистемами рассматривать как бесконечно тонкий диск с нек-рой ср. дисперсией скоростей звезд и споверхностной плотностью, соответствующей проекции полной плотности в данной точке, и приписать этой модели наблюдаемую кривую вращения галактики, то геометрия двухрукавного узора оказывается совпадающей с наблюдаемой при 13 км/(скпк) для определенного типа волн плотности. Согласно другой точке зрения, тип волн плотности определяется плоской подсистемой и дисперсией скоростей ее компонентов, к-рая намного меньше значения, принятого в первом случае. При этом геометрия наблюдаемого узора лучше описывается др. типом волн с 24 км/(скпк). Имеется ряд теоретич. соображений и данных наблюдений, свидетельствующих, по-видимому, в пользу того, что в Галактике реализуется второй случай. Если это так, то Солнце в Галактике находится в исключительном положении, что может иметь далеко идущие последствия для космогонии Солнечной системы и происхождения в ней жизни. Поскольку галактич. диск вращается дифференциально, а спиральные рукава - твердотельно, в Галактике должна существовать окружность, на к-рой угловые скорости диска и волны плотности равны. Такая окружность наз. коротационной (от англ. corotation - совместное вращение). Ее радиус R=R C определяется условием . Поскольку в каждой спиральной галактике может существовать только одна такая окружность, то, очевидно, она явл. выделенной. Угловая скорость вращения Солнца в Галактике 25 км/(скпк), расстояние Солнца до центра Галактики 10 кпк. Если 24 км/(скпк), то, согласно, модели Шмидта (1965 г.), напр., 10,3 кпк. Это значит, что галактич. орбита Солнечной системы близка к коротационной окружности и, следовательно, находится в особом положении.

Галактика Андромеды

Спираль или эллипс? А может, линза? В 1936 году Эдвин Хаббл предложил последовательность эволюции галактик, которая, с незначительными модификациями, остается актуальной до сих пор.

По этой классификации существует четыре основных типа галактик. Иногда к отдельному виду относят карликовые галактики, однако ничем, кроме своего относительно малого размера они не выделяются и сами принадлежат к тому или иному типу в классической категоризации.

Со стороны выглядит как гигантская звезда – светящийся шар с сильнейшей яркостью в центре и тускнеющий к краям. Эллиптические, или сфероидальные галактики почти полностью состоят из старых звезд, поэтому всегда имеют желтый или красноватый оттенок. Новые звезды в них практически не образуются, так как количество межзвездного газа и пыли в них ничтожно (хотя встречаются и исключения). Отличаются между собой эллиптические звездные системы лишь по размеру и степени сжатия. Именно по сжатию их и классифицируют, от E0 до E7. Составляют примерно четверть из числа видимых галактик. По классификации Хаббла – это начальная стадия галактической эволюции.

Эллиптическая галактика ESO 325-G004 / ©NASA/ESA

Спиральная галактика

Самый распространенный тип и, вероятно, самый красивый – составляет более половины числа всех известных галактик. Выглядит как диск с ярким желтым шаром в центре, вокруг которого в виде спиралей закручены более тусклые ветви-рукава голубоватого оттенка (из-за наличия особых звезд – белых и голубых сверхгигантов).

От эллиптических звездных систем отличается целым рядом особенностей строения. Во-первых, у спиральных галактик присутствуют рукава, где проходят процессы активного звездообразования. Во-вторых, присутствует звездный диск – относительно тонкий слой материи вдоль плоскости галактики, где находится основная масса объектов системы, и звезды в котором вращаются вокруг центра диска. В-третьих, широко наблюдается наличие межзвездного газа и пыли – необходимой для рождения звезд среды. Многие спиральные галактики имеют в своем центре своеобразную перемычку (бар), от концов которой расходятся рукава. Классифицируются буквой S и различаются по плотности расположения рукавов (Sa-Sd, с перемычкой – SBa-SBd).

Количество рукавов в среднем составляет пару, однако встречается и больше; в некоторых случаях рукава отличаются по размеру. Все они (если не переживают галактическое столкновение) закручены в одну сторону вокруг центра, где сосредоточена основная масса вещества в виде сверхмассивной черной дыры и плотного шарообразного скопления из старых звезд – балджа.

И наша галактика – Млечный путь, и Туманность Андромеды, с которой мы неминуемо столкнемся через 4 миллиарда лет, – обе представляют собой спиральные галактики. Солнце находится между рукавов и вдали от галактического центра, причем скорость его движения примерно равна скорости вращения рукавов; таким образом, солнечная система избегает опасных для земной жизни областей активного звездообразования, где часто вспыхивают сверхновые.

Спиральная галактика Водоворот и её компаньон NGC 5195 / ©NASA

Линзообразная галактика

По классификации Хаббла это промежуточный тип между эллиптической и спиральной галактиками (S0). Линзообразные звездные системы обладают звездным диском вокруг центрального шаровидного скопления-балджа, однако рукава относительно малы и выражены не очень ярко, а количества межзвездной газопылевой материи недостаточно для активного рождения новых звезд. Основные жители – старые большие звезды, красного или желтого цветов.

Различаются по количеству межзвездной пыли и плотности перемычки в галактическом центре. Составляют примерно 20% числа галактик.

Линзообразная галактика NGC 7049 / ©NASA/ESA

Неправильная галактика

Ни эллипс, ни спираль – неправильные галактики не обладают ни одной из распространенных форм. Как правило, это хаотически связанные гравитацией звездные скопления, порой не имеющие четкой формы и даже ярко выраженного центра. Составляют примерно 5% галактик.

Почему они так сильно отличаются от своих галактических собратьев? Очень вероятно, что каждая такая звездная система когда-то была эллиптической или спиральной, но ее изуродовало столкновение с другой галактикой, или тесное соседство с ней.

Делятся на два основных типа: те, кто имеет хоть какое-то подобие структуры, позволяющее отнести их к последовательности Хаббла (Irr I), и те, кто не обладает даже подобием (Irr II).

Иногда выделяют третий тип – карликовые неправильные галактики (dl или dIrr). В них наблюдается низкое количество тяжелых элементов и большое количество межзвездного газа, что делает их похожими на протогалактики ранней Вселенной. Поэтому изучение этого вида неправильных галактик имеет важное значение для понимания процесса галактической эволюции.

NGC 1569 является карликовой неправильной галактикой в созвездии Жирафа / ©NASA/ESA

Разновидность галактик в последовательности Хаббла , которые характеризуются следующими физическими свойствами:

  • значительный суммарный вращательный момент ;
  • состоят из центрального балджа (почти сферического утолщения), окружённого диском:
    • балдж имеет сходство с эллиптической галактикой , содержащей множество старых звёзд - так называемое «Население II » - и нередко сверхмассивную чёрную дыру в центре;
    • диск является плоским вращающимся образованием, состоящим из межзвёздного вещества , молодых звёзд «Населения I » и рассеянных звёздных скоплений .

Спиральные галактики названы так, потому что имеют внутри диска яркие рукава звёздного происхождения, которые почти логарифмически простираются из балджа. Хотя иногда их нелегко различить (например, во флоккулентных спиралях), эти рукава служат основным признаком, по которому спиральные галактики отличаются от линзообразных галактик , для которых характерно дисковое строение и отсутствие ярко выраженной спирали. Спиральные рукава представляют собой области активного звездообразования и состоят по большей части из молодых горячих звёзд; именно поэтому рукава хорошо выделяются в видимой части спектра. Абсолютное большинство наблюдаемых спиральных галактик вращается в сторону закручивания спиральных ветвей .

Диск спиральной галактики обычно окружён большим сфероидальным гало , состоящим из старых звёзд «Населения II », большинство которых сосредоточено в шаровых скоплениях , вращающихся вокруг галактического центра. Таким образом, спиральная галактика состоит из плоского диска со спиральными рукавами, эллиптического балджа и сферического гало, диаметр которого близок к диаметру диска.

Многие (в среднем две из трёх) спиральные галактики имеют в центре перемычку («бар» ), от концов которой отходят спиральные рукава . В рукавах содержится значительная часть пыли и газа, также множество звёздных скоплений . Вещество в них вращается вокруг центра галактики под действием гравитации.

Масса спиральных галактик достигает 10 12 масс Солнца. Крупнейшей открытой на текущий момент спиральной галактикой является NGC 6872 , общая протяженность которой составляет 522 тысяч световых лет, что в пять раз больше, чем диаметр Млечного пути .

Спиральные рукава

Известен следующий парадокс: время обращения звёзд вокруг ядра галактики составляет порядка 100 миллионов лет; возраст самих галактик в несколько десятков раз больше. Между тем спирали закручены как правило на небольшое число оборотов. Парадокс объясняется тем, что принадлежность звёзд спиралям не постоянна: звёзды входят в область, занимаемую спиральным рукавом, на некоторое время замедляют своё движение в этой области, и покидают спираль. Между тем спираль, как область повышенной плотности вещества в диске спиральной галактики, может существовать неограниченно долго - спирали подобны стоячим волнам.

Спирали галактик могут несильно отличаться по количеству звёзд от окружающего их диска, но могут быть существенно ярче. Газовые облака , пересекая спираль, испытывают сжатие или расширение, порождающие ударные волны в газе. Всё это приводит к нарушению равновесия в облаках и интенсивному звёздообразованию в области спирали. А если учесть, что время жизни ярчайших гигантов и сверхгигантов в тысячи раз меньше, чем возраст Солнца, то получается что большинство ярких голубых звёзд собрано в небольшом объёме спирального рукава.


Спиральные галактики (обозначаются буквой S) – самый многочисленный вид, к которому принадлежит большая часть всех наблюдаемых галактик. Самыми известными представителями этого вида являются и один из красивейших объектов звездного неба - туманность Андромеды. Спиральные галактики получили свое название благодаря характерным спиральным рукавам звездного происхождения, расположенным внутри галактического диска.

Различают два типа спиралей. К первому типу, обозначаемому SA или S, относят спиральные ветви, выходящие непосредственно из центрального уплотнения (подобно рукавам нашей Галактики). У другого типа они начинаются у краев продолговатого обра зования, имеющего овальное уплотнение в центре. Складывается впечатление, что два спиральных рукава соединены между собой перемычкой, поэтому такие галактики и получили название «галактики, пересеченными спиралями», их обозначают символом SB.

фото: Спиральная галактика типа Sc (M74)


Спиральные галактики различают по степени развитости их спиральной структуры, что в классификации обозначается добавлением букв a, b, c к символам S (или SA) и SB. К примеру, обозначение Sa говорит о галактике со слабо развитой или только намечающейся спиральной структурой. Системы Sb имеют уже хорошо заметные ветви, как и у туманности Андромеды, а структура Sc характеризуется наличием клочковатых спиральных ветвей, которые выходят из довольно небольшого центрального уплотнения. Считается, что, чем сильнее развита спиральная структура, тем меньше оказываются размеры центрального уплотнения. Лучше всего спиральная структура изучена у галактик, в которых плоскость спирали перпендикулярна лучу зрения. Если же луч зрения наоборот, лежит в этой плоскости, то спиральная структура не видна, однако хорошо заметно, что галактика имеет вид плоского образования, напоминающего чечевицу с ярко выраженным центральным утолщением. Вдоль средней линии такого образования тянется полоса светопоглощающей материи, которая, как и в нашей Галактике, сильно концентрируется к основной плоскости спирали.

О том, что спиральные ветви галактик представляют собой области преимущественного звездообразования, свидетельствует наличие в них молодых горячих звезд, ионизующих водород на больших расстояниях вокруг себя. , пересекающие спираль, испытывают сжатие или расширение и порождают ударные волны в газе. Это, в свою очередь, вызывает нарушение равновесия в облаках и приводит к интенсивному звездообразованию в спиральных рукавах. Если учесть тот факт, что время жизни самых ярких гигантов и сверхгигантов в несколько тысяч раз меньше, чем возраст Солнца, то выходит что большинство ярких голубых гигантов собрано в сравнительно небольшом объеме спиральной ветви: сверхгигантам не удается покинуть спираль за то время (порядка нескольких миллионов лет), которые существуют до взрыва сверхновой. Именно поэтому множество голубых сверхгигантов придает спиралям галактик заметный голубоватый оттенок.

В 1845 году английским астрономом лордом Россом был обнаружен целый класс туманностей спирального типа. Их природу установили только в начале двадцатого века. Учеными было доказано, что данные туманности являются огромными звездными системами, похожими на нашу Галактику, однако они удалены от нее на многие миллионы световых лет.

Общая информация

Спиральные галактики (фото, приведенные в этой статье, демонстрируют особенности их структуры) своим внешним видом напоминают пару сложенных вместе тарелок или двояковыпуклую линзу. В них можно обнаружить как массивный звездный диск, так и гало. Центральную часть, которая визуально напоминает вздутие, принято называть балджем. А темную полосу (непрозрачную прослойку межзвездной среды), идущую вдоль диска, называют межзвездной пылью.

Спиральные галактики принято обозначать литерой S. Кроме того, их принято делить по степени структуры. Для этого к основному символу добавляют литеры a, b или c. Так, Sa соответствует галактике с малоразвитой спиральной структурой, однако с большим ядром. Третий класс - Sc - относится к противоположным объектам, со слабым ядром и мощными спиральными ветвями. У некоторых звездных систем в центральной части может находиться перемычка, которую принято называть баром. В таком случае к обозначению добавляется символ В. Наша Галактика относится к промежуточному типу, без перемычки.

Каким образом сформировались спиральные дисковые структуры?

Плоские дискообразные формы объясняют вращением звездных скоплений. Существует гипотеза, что в процессе образования галактики препятствует сжатию так называемого протогалактического облака в перпендикулярном направлении к оси вращения. Также следует знать, что характер движения газов и звезд внутри туманностей неодинаков: диффузные скопления вращаются быстрее, чем старые звезды. Например, если характерная скорость вращения газа составляет 150-500 км/с, то звезда гало будет всегда двигаться медленнее. А балджи, состоящие из таких объектов, будут иметь скорость в три раза ниже, чем диски.

Звездный газ

Сильно сжатые системы

Если описанный выше процесс происходит в сильно сжатой звездной системе, то диффузная материя должна осесть на основную плоскость галактики, ведь именно здесь уровень потенциальной энергии является наименьшим. Сюда же и собираются газовые и пылевые частицы. Далее диффузная материя начинает свое движение в основной плоскости звездного скопления. Перемещаются частицы практически параллельно по круговым орбитам. В результате столкновения здесь довольно редки. Если же они и происходят, то энергетические потери при этом незначительны. Из этого следует, что материя далее к центру галактики не перемещается, где потенциальная энергия имеет еще меньший уровень.

Слабо сжатые системы

Теперь рассмотрим, как ведет себя эллипсоидная галактика. Звездная система такого типа отличается совершенно иным развитием данного процесса. Здесь главная плоскость вовсе не является ярко выраженной областью с малым уровнем потенциальной энергии. Сильное снижение этого параметра происходит только в центральном направлении звездного скопления. А это значит, что межзвездные пыль и газ будут притягиваться в центр галактики. Как следствие, плотность диффузной материи здесь будет очень высока, гораздо больше, чем при плоском рассеивании в спиральной системе. Собравшиеся в центре скопления частицы пыли и газа под действием силы притяжения начнут сжиматься, тем самым сформируется малая по размерам зона плотного вещества. Ученые предполагают, что из данной материи в дальнейшем начинают формироваться новые звезды. Важным здесь является иное - малое по своим размерам облако газа и пыли, находящееся в ядре слабо сжатой галактики, не позволяет себя обнаружить в процессе наблюдения.

Промежуточные стадии

Мы рассмотрели два основных типа звездных скоплений - со слабым и с сильным уровнем сжатия. Однако существуют и промежуточные стадии, когда сжатие системы находится между этими параметрами. У таких галактик эта характеристика является недостаточно сильной для того, чтобы диффузная материя собралась вдоль всей основной плоскости скопления. И в то же время она недостаточно слабая и для того, чтобы частицы газа и пыли сконцентрировались в районе ядра. В таких галактиках диффузная материя собирается в небольшую плоскость, которая собирается вокруг ядра звездного скопления.

Галактики с перемычками

Известен еще один подтип спиральных галактик - это звездное скопление с перемычкой. Его особенность состоит в следующем. Если у обычной спиральной системы рукава выходят непосредственно из дискообразного ядра, то у данного типа центр располагается в середине прямой перемычки. А ветви такого скопления начинаются из концов данного отрезка. Еще их принято называть галактиками пересеченных спиралей. Между прочим, физическая природа данной перемычки до сих пор остается неизвестной.

Кроме того, ученым удалось обнаружить еще один вид звездных скоплений. Они характеризуются ядром, как и у спиральных галактик, однако рукавов у них нет. Наличие ядра говорит о сильном сжатии, но все остальные параметры напоминают эллипсоидные системы. Такие скопления получили название чечевицеобразных. Ученые предполагают, что эти туманности образуются в результате потери спиральной галактикой своей диффузной материи.