Суспензии как лекарственная форма, характеристика. Применение суспензий

Суспензия представляет собой вещество, которое не может быть полностью растворенным в жидкости. Сама суспензия является мельчайшими частицами, плавающими в среде, находящейся в жидком либо газообразном состоянии. Примерами могут служить, например, песок в речной воде либо мелкие пылинки, плавающие в воздухе. Общее для всех вариантов вещества является то, что в состоянии покоя оно оседает на дно. Есть смеси, в которых этот процесс протекает крайне медленно, такие субстанции называют взвесями.

Суспензия очень часто применяется в медицине, где она представляет собой лекарственное средство в виде разбавленного порошка. Областями применения суспензий является и керамика, а также различные краски, растворы цемента и прочее. В данной статье речь пойдет именно о применение состава в медицинских условиях.

Суспензия и её способ приготовления

Суспензия может быть приготовлена двумя способами.

Первый называется дисперсионным, и заключается в том, что лекарство измельчается с помощью оборудования, как правило, механического, однако, иногда применяется и ультразвук. При таком варианте изготовления, специалисты учитывают свойства измельчаемого вещества, насколько он боится либо любит воду.

Второй способ называется конденсационным и заключается в способе использования растворителя. В этом случае, сначала готовят раствор с использованием лекарственных средств, растворяющихся в воде, и только затем добавляют жидкость для приготовления суспензии, и само вещество.

Суспензии можно получить совершенно разными способами. Например, при постоянном перемешивании, осуществляемом при помощи огромных мешалок. При получении раствора может использоваться и ультразвук. Суспензии еще получают путем размола сырья в твердом виде, которое перед этим помещено в жидкость. В аптеке суспензию приготавливают конденсационным способом.

Устойчивость суспензий

С точки зрения устойчивости различают два вида суспензий:

  1. Агрегатное состояние. Способность частиц к увеличению размера в результате химического процесс. С этой стороны можно выявить две группы: растворы, в которых используются вещества, называемые гидрофильными. Последним не свойственно изменение размера, поэтому лекарства готовят без стабилизатора. Вторая группа – среда, в которой используются гидрофобные элементы. Они вполне могут увеличиться в размере, и в этом случае соблюсти точную дозировку не представляется возможным, поэтому используется стабилизирующее вещество.
  2. Способность мелких частиц оседать на дно под воздействием физических законов, называют седиментационной. Именно поэтому на этикетках с лекарственным средством в виде суспензии написано, что перед употреблением их надо взбалтывать.

Преимущества и недостатки суспензий

  1. Такие формы выпуска лекарства легко принимать тем, кто по какой-то причине не может проглотить ампулы либо таблетки целиком. Особенно суспензии рекомендуется давать детям.
  2. Они обладают менее насыщенным и выраженным вкусом, а возможность применения раствора позволяет использовать вкусовые добавки, такие как сироп или ароматизаторы. Не все могут принимать горькое или безвкусное лекарство.
  3. Они более стабильны, поэтому обычно их используют для выпуска антибиотиков.

Впрочем, многие специалисты отмечают, что у суспензий есть и недостатки:

  1. Препарат физически не стабилен, постоянно нарушается однородность существующей смеси.
  2. Перед тем как принимать лекарство, его необходимо взбалтывать.
  3. Более существенный недостаток лекарственного средства в форме суспензии является то, что у него маленький срок годности, обычно не больше трех дней.

Впрочем, данные недостатки не причиняют вреда, и пользы от суспензий, используемых в лекарствах все-таки больше.

Суспензии (Suspensiones) - жидкая лекарственная форма для внутреннего, наружного и парентерального применения, содержащая в качестве дисперсной фазы одно или несколько измельченных порошкообразных лекарственных веществ, распределенных в жидкой дисперсионной среде (ГФ XI, вып. 2, с. 214). Размер частиц дисперсной фазы суспензий не должен превышать 50 мкм. В соответствии с требованиями фармакопеи США, Британского фармацевтического кодекса он должен составлять 10-20 мкм.

Суспензии представляют собой непрозрачные жидкости с размером частиц, указанном в частных статьях, не проходящие через бумажный фильтр и видимые под обычным микроскопом. Как микрогетерогенные системы суспензии характеризуются кинетической (седиментационной) и агрегативной (конденсационной) неустойчивостью.

При хранении суспензии неустойчивы, поэтому:

Перед употреблением суспензии взбалтывают в течение 1- 2 мин;

Вещества сильнодействующие и ядовитые лекарственной форме не отпускают.

Исключение составляет тот случай, когда количество вещества, выписанного в рецепте, не превышает высшую разовую дозу.

При прописывании в рецепте вещества списка А в количестве более высшей разовой дозы лекарственный препарат изготовлению не подлежит.

20.1. ПРЕИМУЩЕСТВА СУСПЕНЗИЙ

Удобство лекарственной формы для пациентов, особенно для детей, которые не могут глотать таблетки или капсулы;

Менее интенсивный вкус суспензий, чем растворов. Кроме того, имеется возможность коррекции вкуса лекарств введением сиропов, ароматизаторов;

- лекарственные средства в суспензиях более стабильны, чем в растворе. Это особенно важно при изготовлении лекарственных форм с антибиотиками.

20.2. НЕДОСТАТКИ СУСПЕНЗИЙ

Недостатками суспензий являются:

- физическая неустойчивость: осаждение (седиментация), соединение и увеличение размеров частиц (агрегация) и соединение твердой и жидкой фазы (конденсация). Данные физические явления приводят к осаждению или всплытию твердой фазы. Нарушается принцип однородности дозирования;

- необходимость пациенту перед применением интенсивно перемешивать суспензии для восстановления однородного состояния;

- неудовлетворительно малый срок годности - 3 сут (приказ МЗ РФ? 214).

20.3. ФИЗИЧЕСКИЕ СВОЙСТВА СУСПЕНЗИЙ

Седиментационная устойчивость суспензий определяется законом Стокса, согласно которому скорость седиментации прямо пропорциональна квадрату диаметра частиц, разности плотностей частиц и дисперсной среды и в 18 раз обратно пропорциональна вязкости среды:

Из закона Стокса следует: чем выше степень измельчения частиц и больше вязкость среды, тем выше седиментационная устойчивость суспензий. Кроме того, устойчивость суспензий зависит от степени сродства лекарственного вещества к дисперсионной среде, наличия элект- рического заряда частиц. В суспензиях частицы твердой фазы в случае хорошей смачиваемости дисперсионной средой покрыты сольватными оболочками, которые препятствуют коалесценции (объединению) час-

тиц (суспензии веществ с гидрофильными свойствами). Поэтому введение поверхностно-активных веществ (ПАВ) не требуется. При плохой смачиваемости сольватные оболочки не образуются, в результате чего происходит осаждение или всплывание твердых частиц (суспензии веществ с резко выраженными гидрофобными свойствами).

20.4. МЕТОДЫ ИЗГОТОВЛЕНИЯ СУСПЕНЗИЙ

В фармацевтической технологии используют 2 метода изготовления суспензий:

- конденсационный (путем регулируемой кристаллизации). Например, к воде добавляют этанольные растворы кислот бор- ной, салициловой и др. Выпавшие кристаллы образуют суспензию;

- дисперсионный (путем измельчения кристаллических веществ в дисперсионной среде).

20.5. ВСПОМОГАТЕЛЬНЫЕ ВЕЩЕСТВА, ПРИМЕНЯЕМЫЕ ДЛЯ СТАБИЛИЗАЦИИ СУСПЕНЗИЙ

Для повышения устойчивости суспензий с гидрофобными веществами используют:

А. Загустители - вещества, обладающие незначительной поверх- ностной активностью, но обеспечивающие стабильность суспензии за счет повышения вязкости системы.

Различают загустители:

- природные (камеди, альгинаты, каррагенаны, гуаровая смола, желатин);

- синтетические (M!, натрия карбоксиметилцеллюлоза - Carbopol?);

- неорганические (аэросил, бентонит, магния алюмосиликат - Veegum?).

Б. Стабилизаторы:

- ПАВ, понижающие межфазное поверхностное натяжение на границе раздела фаз (твины, жиросахара, пентол, эмульгатор Т-2 и др.).

В таблице 20.1 представлены стабилизаторы и их концентрации, применяемые для изготовления суспензий гидрофобных веществ.

Таблица 20.1. Стабилизаторы суспензий

Примечание. Для стабилизации суспензии серы для наружного при- менения рекомендуют использовать мыло медицинское в количестве 0,1- 0,2 г на 1,0 г серы. С медицинской точки зрения добавление мыла целесообразно, так как оно разрыхляет поры кожи, являясь ПАВ, и способствует глубокому проникновению серы, которую используют при лечении чесотки и других кожных заболеваний. Следует иметь в виду, что мыло в качестве стабилизатора серы рекомендуется применять только по указанию врача. Если в рецепте содержатся соли двухвалентных металлов, то количество мыла увеличивают до 0,3-0,4 г на 10 г серы. Одновременно рекомендуется проводить стерилизацию серы в суспензиях спиртом и глицерином.

Правило 1

Для стабилизации лекарственных веществ с резко выраженными гидрофобными свойствами используют желатозу в соотношении 1:1, а с нерезко выраженными свойствами - 1:0,5.

Исключение: суспензия серы (см. табл. 20.1).

20.6. ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ СУСПЕНЗИЙ

Технологическая схема получения суспензий дисперсионным методом состоит из следующих стадий:

Подготовки;

Измельчения;

Смешивания;

Упаковки, оформления;

Контроля качества.

1. Подготовительная стадия включает следующие технологические операции:

- подготовку рабочего места;

- подготовку материалов, оборудования;

- расчеты, оформление обратной стороны ППК;

- приготовление растворов;

- взвешивание суспендируемых веществ.

2. Стадия измельчения включает 2 технологические операции:

- получение концентрированной суспензии (пульпы);

- получение разбавленной суспензии, в том числе фракционирование (взмучивание и отстаивание).

Примечание. Данная стадия обязательна для суспензий веществ, обладающих гидрофильными свойствами, и не обязательна для суспензий веществ, обладающих гидрофобными свойствами. Это объясняется седиментационной неустойчивостью первых и агрегативной неустойчивостью - вторых.

А. Операция получения концентрированной суспензии. Для получения концентрированной суспензии применяют операцию измельчения в среде жидкости. Введение жидкости способствует более тонкому измельчению частиц за счет раскалывающего действия сил поверхностного натяжения (эффект Ребиндера) (рис. 20.1).

Рис. 20.1. Эффект Ребиндера

Впервые расклинивающее действие жидкости и понижение прочности твердых тел вследствие указанного воздействия были исследованы отечественным ученым П.А. Ребиндером в 1928 г. Эффект Ребиндера основан на разрушающем действии разности сил поверхностного натяжения жидкости внутри трещины твердого тела (см. рис. 20.1). Эффект определяется структурой твердого тела (наличие дислокаций, трещин), свойствами жидкости (вязкость) и ее количеством. В результате действия сил поверхностного натяжения происходит многократное падение прочности, повышение хрупкости твердого тела. Это облегчает и улучшает механическое измельчение различных материалов.

Б.В. Дерягин исследовал влияние эффекта Ребиндера на измельчение фармацевтических порошков. Им было определено оптимальное соотношение массы жидкости к массе твердого тела, которое при- мерно равно 1/2.

Правило 2

Для получения тонко измельченных лекарственных веществ рекомендуется сначала получать концентрированную суспензию путем растирания суспендируемых веществ в воде, растворах лекарс - твенных веществ или другой вспомогательной жидкости, взятой в количестве 1/2 от массы измельчаемого лекарственного вещества (правило Б.В. Дерягина, основанное на эффекте Ребиндера).

Б. Операция получения разбавленной суспензии, в том числе фракционирование (взмучивание и отстаивание). Целью операции является получение частиц размером менее 50 мкм. Частицы данного размера образуют суспензии, сохраняющие однородное состояние в течение 2-3 мин, т.е. того времени, которое необходимо на дозирование и прием лекарственной формы пациентом.

Правило 3

После получения концентрированной суспензии добавляют воду в количестве, превышающем 10-20 раз дисперсной фазы. Затем суспензию интенсивно перемешивают (прием взмучивания) и отстаивают в течение 2-3 мин с целью фракционирования частиц. Mелкие частицы находятся во взвешенном состоянии, крупные частицы оседают на дно. Тонкую взвесь сливают, осадок повторно измельчают и взмучивают с новой порцией жидкости. Операцию повторяют, пока весь осадок не перейдет в тонкую взвесь.

Пример 1

Rp.: Amyli

Bismuthi subnitratis ana 3,0 Aq. риг. 200 ml

M.D.S. Протирать кожу лица.

В подставку отмеривают 200 мл воды очищенной. В ступке измельчают 3,0 г крахмала и 3,0 г висмута нитрата основного с 3 мл воды (правило Б.В. Дерягина), добавляют 60-90 мл воды, смесь взмучивают и оставляют в покое на 2-3 мин. Тонкую взвесь осторожно сливают с осадка во флакон. Остаток в ступке дополнительно растирают пестиком, смешивают с новой порцией воды, сливают. Измельчение и взмучивание повторяют, пока все крупные частицы не превратятся в тонкую взвесь.

Правило 4

При изготовлении суспензий гидрофобных веществ с резко выраженными свойствами необходимо добавление этанола как при диспергировании трудно измельчаемых веществ.

Пример 2

Rp.: Solutionis Natrii bromidi 0,5% - 120 ml

Camphorae 1,0

Coffeini-natrii benzoatis 0,5

M.D.S. По 1 столовой ложке 3 раза в день.

В подставку отмеривают 112 мл воды очищенной, 5 мл раствора кофеина-натрия бензоата (1:10) и 3 мл раствора натрия бромида (1:5). В ступке растирают до растворения 1,0г камфоры с 10 каплями 95% этанола, добавляют 1,0 г желатозы и 1 мл приготовленного раствора лекарствен- ных веществ, смешивают до получения тонкой пульпы. Переводят пульпу в отпускной флакон раствором кофеина-натрия бензоата и натрия бромида, добавляя его по частям.

Правило 5

При изготовлении суспензий, содержащих лекарственные вещества в концентрации 3% и более, их готовят по массе, поэтому в паспорте письменного контроля в данном случае обязательно указание массы тары и массы изготовленной суспензии.

Пример 3 Rp.: Zinci oxydi Talci ana 5,0

Aq. purificata 100 ml

M.D.S. Протирать кожу лица.

В ступке смешивают 5,0 г цинка оксида и 5,0 г талька сначала в сухом виде, затем добавляют приблизительно 5 мл воды очищенной (правило Б.В. Дерягина), растирают до образования кашицеобразной массы. К тонкой пульпе добавляют по частям оставшуюся воду очищенную, перемешивая пестиком, переносят во флакон и оформляют.

Правило 6

Суспензии не фильтруют.

3. Стадия смешивания включает введение других лекарственных веществ в виде растворов. Особенностью данной стадии является необходимость проверки совместимости как лекарственных веществ, так и их влияния на седиментационную устойчивость суспензий. Сильные электролиты и полярные вещества резко ухудшают ста- бильность суспензий.

Правило 7

Если в состав суспензии входят неорганические соли, то концентрированную суспензию лучше готовить, растирая вещество с очищенной водой, затем добавлять стабилизатор, а затем растворы солей в порядке возрастания концентрации.

4. Стадия оформления и упаковки. Суспензии упаковывают аналогично жидким лекарственным формам в тару, обеспечивающую сохранность качества препарата в течение срока годности. Наиболее удобной является упаковка суспензий в шприцы, снабженные переходниками, и дозаторы (рис. 20.2).

При оформлении обязательно наличие на этикетке дополнительных предупредительных надписей: «Перед употреблением взбалтывать», «Замерзание недопустимо», «Срок годности 3 суток».

5. Оценка качества суспензий. Качество приготовленных суспензий оценивают так же, как и других жидких лекарственных форм, т.е. проверяют документа-

Рис. 20.2. Шприцы и насадки для дозирования суспензий

цию (рецепт, паспорт), оформление, упаковку, цвет, запах, отсутствие механических включений, отклонения в объеме или мас- се. Специфическими показателями качества для суспензий являются ресуспендируемость и однородность частиц дисперсной фазы.

Ресуспендируемость. При наличии осадка суспензии восстанавливают равномерное распределение частиц по всему объему при взбалтывании в течение 20-40 с после 24 ч хранения и за 40-60 с после 24-72 ч хранения.

Однородность частиц дисперсной фазы. Не должно быть неоднородных крупных частиц дисперсной фазы.

Примечание. Определение размера частиц проводится при микро- скопировании. Размер частиц дисперсной фазы не должен превышать размеров, указанных в частных статьях на суспензии отдельных лекарственных веществ (ФС, ВФС).

20.7. ПРИМЕРЫ РЕЦЕПТОВ СУСПЕНЗИЙ (ПРИКАЗ МЗ СССР? 223 ОТ 12.08.1991 г.)

1. Суспензия йодоформа и циника оксида в глицерине Rp.: Iodoformii 9,0

Zinci oxydi 10,0 Glycerini ad 25,0 M .D.S. Наружное.

Действие и показания: антисептическое средство.

2. Суспензия серы с левомицетином и кислотой салициловой спиртовая

Rp.: Laevomycetini Ас. salicylici ana 1,5 Sulfuris praecip. 2,5 Sp. aethylici 70% - 50 ml M.D.S. Протирать кожу.

Действие и показания: антибактериальное и антисептическое средство при заболеваниях кожи.

3. Суспензия цинка окисида, талька и крахмала Rp.: Zinci oxydi

Talci

Amyli ana 20,0

Aq. pur. 100 ml M.D.S. Наружное.

Действие и показания: антисептическое, вяжущее средство.

4. Суспензия «Новоциндол» Rp.: Zinci oxydi

Talci

Sp. aethylici 96% - 21,4 ml

Aq. рш\ ad 100,0 M .D.S. Смазывать кожу.

Действие и показания:

5. Суспензия цинка оксида, талька, крахмала и анестезина спиртовоглицериновая

Rp.: Zinci oxydi

Talci

Amyli

Anaesthesini ana 12,0

Glycerini 20.0

Sp. aethylici 70% - 20,0 ml Aq. pur. ad 100,0

M.D.S. Наносить на кожу.

Действие и показания: антисептическое, вяжущее, местно-анестезирующее средство.

6. Суспензия цинка оксида, крахмала, талька, анестезина и кислоты борной водно-глицериновая

Rp.: Zinci охidi Amyli

Talci ana 30,0 Anaesthesini 5,0

Glycerini 20,0

Sol. Ac. borici 2% - 200,0

M.D.S. Наносить на кожу.

Действие и показания: антисептическое, вяжущее и местно-анестезирующее средство.

Контрольные вопросы

1. Каково определение суспензий как лекарственной формы? Каковы ее

особенности как гетерогенной системы?

2. Каковы виды устойчивости суспензии как гетерогенной системы?

3. Какие факторы влияют на устойчивость суспензий?

4. Как приготовить суспензию из гидрофильных веществ?

5. Как объяснить применение правила проф. Б.В. Дерягина и приема взмучивания при изготовлении суспензий?

6. Какова роль стабилизаторов и механизм их действия?

7. Как обосновать выбор стабилизатора для суспензий гидрофобных веществ?

8. Как приготовить суспензии из веществ с нерезко выраженными гидрофобными свойствами?

9. Как приготовить суспензии из веществ с резко выраженными гидро-

фобными свойствами?

10. Каковы особенности приготовления суспензии серы?

11. Каковы основные показатели оценки качества суспензии?

12. Каким изменениям могут подвергаться суспензии в процессе хранения?

Тесты

1. Перед употреблением суспензии взбалтывают в течение:

1. 1 мин.

2. 1-2 мин.

3. 2 мин.

2. Ядовитые вещества в суспензиях:

1. Отпускают.

2. Отпускают, если количество ядовитого вещества, выписанного в рецепте, не превышает высшую разовую дозу.

3. Скорость седиментации прямо пропорциональна:

1. Квадрату диаметра частиц.

2. Плотностей частиц и дисперсной среды.

3. Вязкости среды.

4. Преимуществами суспензий перед другими лекарственными формами являются:

1. Физическая устойчивость (седиментация).

2. Удобство лекарственной формы для пациентов (детей), которые не могут глотать таблетки или капсулы.

3. Mалый срок годности - 3 сут.

5. Из закона Стокса следует: чем выше степень измельчения частиц, тем седиментационная устойчивость суспензий:

1. Выше.

2. Ниже.

6. Из закона Стокса следует: чем больше вязкость среды, тем седиментационная устойчивость суспензий:

1. Выше.

2. Ниже.

7. Для стабилизации лекарственных веществ с резко выраженными гидрофобными свойствами используют желатозу в соотношении:

1. 1:1.

2. 1:2.

3. 1:0,5.

8. Для стабилизации лекарственных веществ с нерезко выраженными гидрофобными свойствами используют желатозу в соотношении:

1. 1:1.

2. 1:2.

3. 1:0,5.

9. Фракционирование (взмучивание и отстаивание) обязательно для суспензий веществ, обладающих:

1. Гидрофильными свойствами.

2. Гидрофобными свойствами.

10. Для получения тонко измельченных лекарственных веществ рекомендуется сначала получать концентрированную суспензию путем растирания суспендируемых веществ в воде, растворах лекарственных веществ или другой вспомогательной жидкости в количестве:

1. 1/1 от массы измельчаемого лекарственного вещества.

2. 1/2 от массы измельчаемого лекарственного вещества.

3. 2/1 от массы измельчаемого лекарственного вещества.

11. При изготовлении суспензий, содержащих лекарственные вещества в концентрации 3%, их готовят:

1. По массе.

2. По объему.

12. Суспензии:

1. Фильтруют.

2. Не фильтруют.

13. Если в состав суспензии входят неорганические соли, то концентрированную суспензию лучше готовить, растирая вещество с:

1. Раствором соли.

2. Очищенной водой.

14. На изготовление рецепта:

Rp.: Solutionis Natrii bromidi 0,5% 120 ml Camphorae 1,0 Coffeini-natrii benzoatis 0,5 потребуется желатозы:

1. 1,0.

2. 2,0.

3. 3,0.

15. Общий объем рецепта:

Rp.: Solutionis Natrii bromidi 0,5% 120 ml Camphorae 1,0 Coffeini-natrii benzoatis 0,5:

1. 120 мл.

2. 121,5 мл.

3. Рецепт изготавливают по массе.

16. Rp.: Zinci oxydi; Talci ana 5,0 Aquae purificata 100 ml

Для изготовления рецепта используют желатозу в количестве:

1. 10,0.

2. 5,0.

Введение

Обеспеченность населения страны лекарственными средствам - одна из важнейших социальных задач. В некоторых зарубежных странах готовые лекарственные препараты составляют до 95%. В нашей стране количество и так же велико и имеет тенденцию к увеличению. Но лекарственные препараты, изготовленные в аптеках, в большей степени решают проблему индивидуального подхода при лечении конкретного больного с учетом анатомо-физиологических и возрастных особенностей организма. Весь опыт мировой медицины показывает, что индивидуализация лечения может быть успешно реализована только с помощью изготовления препаратов с несколькими вариантами дозировок в условиях рецептурно-производственных отделов аптеки.

Среди изготавливаемых аптекой лекарственных форм высока доля жидких лекарственных форм, в которых значительное место занимают суспензии. Такое широкое распространение суспензий перед другими лекарственными формами обусловлено рядом преимуществ :

Удобство лекарственной формы для пациентов, особенно для детей, которые не могут глотать таблетки и капсулы;

Регулирование терапевтического эффекта, т.е. увеличение по сравнению с порошками и таблетками и пролонгирование действия по сравнению с растворами (по эффективности терапевтического действия и скорости наступления эффекта суспензии занимают промежуточное положение между растворами и порошками);

Создание депо лекарственных средств, т.е. получение лекарственных препаратов пролонгированного действия;

Менее интенсивный вкус суспензий, чем растворов. Кроме того, имеется возможность коррекции вкуса лекарств путем введением сиропов, ароматизаторов;

Возможность отпуска в виде сухих полуфабрикатов (порошков или гранул) - так называемые «сухие» суспензии;

Возможность обволакивающего действия для ряда лекарственных средств.

Лекарственные средства в суспензиях более стабильны, чем в растворе. Это особенно важно при изготовлении лекарственных форм с антибиотиками;

Но существуют и недостатки данной лекарственной формы, которые связаны с ее гетерогенностью :

Нестабильность (седиментационная, агрегационная, гидролитическая и микробиологическая);

Относительная сложность изготовления, т.е. обязательное соблюдение некоторых приемов;

Необходимость пациенту перед применением интенсивно перемешивать суспензии для восстановления однородного состояния;

Непродолжительный срок годности;

Таким образом, совершенствование технологии суспензий, расширение номенклатуры данной лекарственной формы является актуальным и перспективным.

Суспензии как лекарственная форма, характеристика

Суспензии является официальной лекарственной формой. Согласно ГФ XI, суспензии - это жидкая лекарственная форма, содержащая в качестве дисперсной фазы одно или несколько измельченных порошкообразных лекарственных веществ, распределенных в жидкой дисперсионной среде. Различают суспензии для внутреннего, наружного и парентерального применения. Суспензии для парентерального применения вводят только внутримышечно.

По дисперсологической характеристике, суспензии - это свободные, всесторонне дисперсные системы с твердой дисперсионной фазой и жидкой дисперсионной средой. Суспензии относят к микрогетерогенным системам. В зависимости от состава и способа приготовления различают грубые суспензии, имеющие величину частиц дисперсной фазы от 0,1 до 50, иногда до 100 мкм и тонкие суспензии, имеющие размер частиц от 0,1 до 1 мкм. Частицы видимы в оптический микроскоп, могут быть различимы невооруженным глазом, задерживаются на бумажных фильтрах, практически не участвуют в броуновском движении и диффузии. .

Характерным свойством суспензий является их оптическая неоднородность, выражающая в большей или меньшей степени мутности. Мутность является неотъемлемым внешним признаком суспензий из-за наличия в ней нерастворимых частиц, непроницаемых для света. Степень мутности суспензий может быть различной и определяется концентрацией взвешенной фазы и степенью ее дисперсности. Для технологии это свойство важно с точки зрения внешнего вида и оценки качества лекарственной формы .

Как микрогетерогенные системы суспензии характеризуются кинетической (седиментационной) и агрегативной (конденсационной) неустойчивостью. Кинетическая неустойчивость выражается в неспособности системы противостоять оседанию частиц и сохранять равномерное распределение частиц по всему объему или массе суспензии. Под агрегативной неустойчивостью понимают слипание частиц суспензии под действием молекулярных сил, при этом образуются агрегаты.

Вследствие неустойчивости суспензий, нарушается точность дозирования, поэтому в суспензиях для внутреннего применения запрещается изготовление лекарственных препаратов, содержащих ядовитые вещества, при изготовлении суспензий, содержащих сильнодействующие вещества, масса этого вещества не должна превышать высшую разовую дозу.

При изготовлении лекарственной формы, провизору-технологу следует предвидеть образование суспензии. Лекарственная форма «суспензия» будет получена в следующих случаях :

1) при нерастворимости лекарственного вещества в дисперсионной среде, указанной в прописи (например, суспензии цинка оксида, стрептоцида, висмута нитрата основного, серы и др.);

2) при превышении предела растворимости лекарственного вещества в данной дисперсионной среде (например, для натрия гидрокарбоната в концентрации более 8%, для борной кислоты - более 4%);

3) в результате снижения растворимости вещества под влиянием избыточного количества одноименного иона (например, папаверина гидрохлорид выпадает в осадок при содержании в растворе избытков иона хлора);

4) в результате высаливающего, коагулирующего действия сильных электролитов (например, кальция хлорида на экстрактивные вещества настоек, настоев, экстрактов);

5) вследствие химического взаимодействия лекарственных веществ;

6) в результате ухудшения условий растворения при смешивании двух или нескольких растворителей, отличающихся растворяющей способностью (например, при добавлении к водному раствору спирта камфорного, настоек, экстрактов и других жидкостей, содержащих этанол и т.п.).

Технология суспензий должна включать особые технологические приемы, которые обеспечивают получение данной лекарственной формы с тонко диспергированными частицами. При изготовлении суспензии не фильтруют.

Оценку качества суспензий проводят согласно ГФ XI, при этом проверяют:

Однородность частиц дисперсной фазы (определяют при микроскопировании, не должно быть неоднородных крупных частиц; размер частиц должен соответствовать значению, приведенному в частных статьях);

Время отстаивания (по величине отстоянного слоя при хранении судят об устойчивости суспензий, чем меньше высота отстоянного слоя, тем устойчивость больше);

Ресуспендируемость (способность частиц дисперсной фазы равномерно распределятся во всем объеме суспензии при взбалтывании - после 24 часов хранения в течение 15-20 секунд, а после трех суток хранения - в течение 40-60 секунд);

Сухой остаток (определяют с целью проверки точности дозирования суспензий; для этого отмеряют необходимое количество суспензии, высушивают и устанавливают массу сухого остатка. Отклонение в содержании действующих веществ в 1 г (мл) суспензии не должно превышать ± 10%);

Суспензии отпускают во флаконах из бесцветного стекла, за исключением суспензий светочувствительных препаратов, чтобы визуально контролировать однородность и ресуспендируемость. Флаконы снабжают этикеткой «Внутреннее» или «Наружное», дополнительные этикетки «Перед употреблением взбалтывать» и «Хранить в прохладном месте» (для нестерильных водных суспензий). . Срок хранения водных суспензий, изготовленных в аптеке не более трех суток, если нет других указаний в нормативных документах.

Суспензии

Суспензии - это дисперсные системы, в которых дисперсной фазой являются частицы твердого вещества размером, более 10 -5 см., дисперсной средой - жидкость.

Формально суспензии от лиозолей (коллоидных растворов) отличаются только размерами частиц дисперсной фазы. Размеры твердых частиц в суспензиях (более 10-5 см.) могут быть на несколько порядков больше, в лиозолях (10-7-10-5 см). Это количественное различие обусловливает чрезвычайно важную особенность суспензий: в большинстве суспензий частички твердой фазы не участвуют в броуновском движении. Поэтому свойства суспензий существенно отличаются от свойств коллоидных растворов; их рассматривают как самостоятельный вид дисперсных систем.

Суспензии классифицируются по нескольким признакам:

1. По природе дисперсионной среды: органосуспензии (дисперсионная среда - органическая жидкость) и водные суспензии.

2. По размерам частиц дисперсной фазы: грубые суспензии (d > 10-2 см), тонкие суспензии (-510-5< d < 10-2 см), мути (110-5< d < 510-5 см).

3. По концентрации частиц дисперсной фазы: разбавленные суспензии (взвеси) и концентрированные суспензии (пасты).

В разбавленных суспензиях частицы свободно перемещаются в жидкости, сцепление между частицами отсутствует и каждая частица кинетически независима. Разбавленные суспензии - это свободнодисперсные бесструктурные системы. В концентрированных суспензиях (пастах) между частицами действуют силы, приводящие к образованию определенной структуры (пространственной сетки). Таким образом, концентрированные суспензии - это связнодисперсные структурированные системы.

Конкретные значения концентрационного интервала, в котором начинается структурообразование, индивидуальны и зависят, в первую очередь от природы фаз, формы частиц; дисперсной фазы, температуры, механических воздействий. Механические свойства разбавленных суспензий определяются, главным образом, свойствами дисперсионной среды, а механические свойства связнодисперсных систем определяются, кроме того, свойствами дисперсной фазы и числом контактов между частицами.

Суспензии, так же как и любую другую дисперсную систему, можно получить двумя группами методов: со стороны грубодисперсных систем - диспергационными методами, со стороны истинных растворов - конденсационными методами.

Наиболее простым и широко распространенным как в промышленности, и в быту методом получения разбавленных суспензий является взбалтывание соответствующего порошка в подходящей жидкости с использованием различных не перемешивающих устройств (мешалок, миксеров и т. д.). Для получения концентрированных суспензий (паст) соответствующие порошки растирают с небольшим количеством жидкости.

Так как суспензии отличаются от лиозолей только тем, что частицы в них на несколько порядков больше, все методы, которые используются для получения золей, можно применять и для получения суспензий. При этом необходимо, чтобы степень измельчания диспергациониыми методами была меньше, чем при получении лиозолей. При конденсационных методах конденсацию необходимо проводить так, чтобы образовывались частицы, имеющие размеры 10-5 - 10-2 см. Размер образующихся частиц зависит от соотношения скоростей образования зародышей кристаллов и их роста. При небольших степенях пресыщения обычно образуются крупные частицы, при больших - мелкие. Предварительное введение в систему зародышей кристаллизации приводит к образованию практически монодисперсных суспензий. Уменьшение дисперсности может быть достигнуто в результате изотермической перегонки при нагревании, когда мелкие кристаллы растворяются, а за их счет растут крупные.

При этом должны соблюдаться условия, ограничивающие возможности значительного разрастания и сцепления частиц дисперсной фазы. Дисперсность образующихся суспензий можно регулировать также введением ПАВ.

Суспензии очищают от примесей растворенных веществ диализом, электродиализом, фильтрованием, центрифугированием.

Суспензии образуются также в результате коагуляции лиозолей. Следовательно, способы осуществления коагуляции - это одновременно и методы получения суспензий. Отсутствие структуры в разбавленных суспензиях и наличие ее в концентрированных обусловливает резкое различие в свойствах этих систем.

Оптические свойства разбавленных суспензий: длины волн видимой части спектра лежат в пределах от 410-5 см (фиолетовый свет) до 710-5 см (красный свет). Световая волна, проходя через суспензию, может поглощаться (тогда суспензия окрашена), отражаться от поверхности частиц дисперсной фазы по законам геометрической оптики (тогда суспензия выглядит как мутная) и только в высокодисперсных суспензиях - мутях (510-5) может наблюдаться светорассеяние, отклоняющееся от закона Рэлея.

В оптический микроскоп видны частицы, размер которых не менее 510-5 см, что соответствует большинству разбавленных суспензий.

Электрокинетические свойства суспензий подобны аналогичным свойствам гидрозолей и обусловлены образованием на поверхности частиц ДЭС и возникновение потенциала.

В суспензиях проявляются все 4 вида электрокинетических явлений. Наиболее широкое применение нашел электрофоретический метод нанесения покрытий на разные поверхности.

Молекулярно-кинетические свойства суспензий отличаются в зависимости от размеров частиц суспензий. Для частиц 10-4 - 10-5 см наблюдается седиментационно-диффузионное равновесие. Описываемое соответствующем уравнением (см. седимент. устойчивость)

Для частиц 10-4 - 10-2 броуновское движение практически отсутствует и для них характерна быстрая седиментация (см. седимент. устойчивость), т.е. для них применим седиментационный анализ.

Седиментационная устойчивость суспензии - это способность её сохранять неизменным во времени распределение частиц по объему системы, т. е. способность системы противостоять действию силы тяжести.

Так как большинство суспензий оказываются полидисперсными системами, содержащими и относительно крупные частицы, то они являются седиментационно (кинетически) неустойчивыми системами.

Изучение седиментации суспензий связано, в очередь с получением кривых накопления осадка (кривых седиментации) m=f(t). Кривыe накопления мог быть двух видов: с перегибом или без перегиба. Установлено, что вид кривых седиментации зависит от того, является ли седиментирующая суспензия агрегативно устойчивой или нет. Если седиментация сопровождается укрупнением частиц, а следовательно, увеличением скорости их оседания, то на кривых седиментации появляется точка перегиба. Если же суспензия агрегативно устойчива (нет коагуляций), то на кривой седиментации перегиб отсутствуёт. Характер осадков, полученных в том и другом случаях, также различен.

В агрегативно устойчивых суспензиях оседание частиц происходит медленно и формируется очень плотный осадок. Объясняется это тем, что поверхностные слои препятствуют агрегированию частиц; скользя друг по другу, частицы могут перейти в положение с минимальной потенциальной энергией, т.е. с образованием упаковки, близкой к плотнейшей. В этом случае расстояние между частицами и координационное число (число соседних частиц) в осадке такой седиментирующей, но предельно стабилизированной суспензии, определяется соотношением между:

· силой тяжести;

· межмолекулярным притяжением частиц;

· силами отталкивания между частицами, обеспечивающими агрегативную устойчивость суспензии.

В агрегативно неустойчивых суспензиях оседание ча-стиц происходит значительно быстрее вследствие образования агрегатов. Однако выделяющийся осадок занимает гораздо больший объем, так как частицы сохраняют, то случайное взаимное расположение, в котором они оказались при первом же контакте, силы сцепления между ними соизмеримы с их силой тяжести или больше ее. Наблюдается анизометрия (т. е. преобладание одного из размеров частицы над двумя другими) образующихся агрегатов или флокул. Исследования показывают, что наиболее вероятны цепочечные и спиральные первоначальные агрегаты, из которых затем получаются осадки большого седиментационного объема.

Различие седиментационных объемов агрегативно устойчивых и неустойчивых систем наиболее, четко проявляется, если частицы имеют средние размеры. Если частицы крупные, то, несмотря да то, что суспензия агрегативно неустойчивая, осадок получается более плотным из-за значительной силы тяжести, зачастую преобладающей над си-лами сцепления между частицами. Если же частицы очень мелкие, то и в агрегативно устойчивой системе из-за малой силы тяжести образуется чрезвычайно подвижный осадок.

Агрегативная устойчивость суспензии - это способность сохранять неизменной во времени степень дисперсности т. е. размеры частиц и их индивидуальность.

Агрегативная устойчивость разбавленных суспензий весьма сходна с агрегативной устойчивостью лиофобных золей. Но суспензии являются более агрегативно устойчивыми системами, так как содержат более крупные частицы и следовательно, имеют меньшую свободную поверхностную энергию.

При нарушении агрегативной устойчивости суспензии происходит коагуляция - слипание частиц дисперсной фазы.

Для достижения агрегативной устойчивости суспензии необходимо выполнение, по крайней мере, одного из двух условий:

· смачиваемость поверхности частиц дисперсной фазы дисперсионной средой;

· наличие стабилизатора.

Первое условие. Если частицы суспензии хорошо смачиваются дисперсионной средой, то на их поверхности образуется сольватная оболочка, обладающая упругими свойствами и препятствующая соединению частиц в крупные агрегаты. Хорошая смачиваемость частиц наблюдается в суспензиях полярных частиц в полярных жидкостях и неполярных частиц в неполярных жидкостях.

Второе условие. Если частицы суспензии не смачиваются или плохо смачиваются дисперсионной средой, то используют стабилизатор.

Стабилизатор - это вещество, добавление которого в дисперсную систему повышает ее агрегативную устойчивость, т. е.препятствует слипанию частиц.

В качестве стабилизаторов суспензий применяют:

· низкомолекулярные электролиты;

· коллоидные ПАВ;

Механизм их стабилизирующего действие различен, в зависимости от природы стабилизатора реализуется один, а чаще несколько факторов устойчивости, аналогично тому, как это происходит в лиофобных золях. Возможные факторы устойчивости: адсорбционно-сольватный, электростатический, структурно-механический, энтропийный, гидродинамический.

Если стабилизатор является ионогенным веществом, то обязательно действует электрический фактор устойчивости: на поверхности частиц образуется двойной электрический слой, возникает электрокинетический потенциал и соответствующие электростатические силы отталкивания, препятствующие слипанию частиц. Электростатическое отталкивание частиц описано теорией ДЛФО. Если его ионогенное вещество - низкомолекулярный неорганический электролит, то его стабилизирующее действие ограничивается только этим фактором. Если же ионогенное вещество - коллоидное - ПАВ или полиэлектролит, то реализуются и другие факторы устойчивости, рассмотрим их подробнее.

Стабилизирующее действие коллоидных ПАВ определяется их способностью адсорбироваться на межфазной поверхности, образуя адсорбционные пленки. Строение адсорбционного слоя зависит от:

· природы ПАВ;

· природы межфазной поверхности (границы: «твердая частица - жидкая среда»);

· степени заполнения поверхности;

· наличия в дисперсионной среде различных добавок.

Изменение строения адсорбционного слоя отражается на его защитных свойствах.

Коллоидное ПАВ, имея дифильное строение, способно адсорбироваться как на полярных, так и на неполярных поверхностях, лиофилизируя их.

В соответствии с правилом уравнивания полярностей Ребиндера стабилизирующее действие ПАВ проявляется тем заметнее, чем больше первоначальная разница в полярностях твердой частицы и жидкой дисперсионной среды.

Но лучший стабилизирующий эффект достигается при более специфическом выборе ПАВ. Подбор ПАВ для стабилизации суспензий различного типа сходен с подбором ПАВ для стабилизации и прямых, обратных эмульсий.

В пищевой промышленности для этих целей используются липоиды (лецитин), ланолин и т.д.

Максимум стабилизирующих свойств наблюдается у ПАВ с 14-16 атомами углерода (так называемый максимум Доннана). В пищевой промышленности для этих целей используют пропиловый спирт, соли высших карбоновых кислот и т.д.

В качестве стабилизаторов дисперсных систем, в том числе и суспензий, можно использовать только такие ВМС, которые являются поверхностно-активными веществами. Эти вещества отличаются от коллоидных ПАВ тем, что для них характерно возникновение структурно-механического фактора устойчивости.

Таким образом, если в качестве стабилизатора применяются ВМС, то механизм их действия аналогичен механизму коллоидной защиты лиофобных золей.

В этих условиях существенно возрастает роль энтропийного фактора устойчивости. Если в качестве ВМС используют полиэлектролиты, то к этим двум факторам добавляется третий - электростатический.

Полиэлектролиты применяют для водных суспензий, т.е. для стабилизации гидрофобных частиц в жидкости. Наиболее распространены - альгинаты, карбоксилитил целлюлозы, алкилполиамин.

Механические методы разрушения суспензий основаны на отделении вещества дисперсной фазы от дисперсионной среды. Для этого используют различные устройства: отстойники, фильтры центрифуги. Они используются на завершающей стадии разрушения, когда агрегативная устойчивость суспензий уже минимальна или отсутствует.

Термические методы разрушения суспензий основаны на изменении температуры суспензии. Осуществляются 2-мя способами:

1) Замораживание с последующим оттаиванием

2) Высушивание (т.е. концентрирование).

Они требуют больших энергозатрат и в промышленности не используются.

Химические методы разрушения суспензий основаны на использовании химических реагентов. Поэтому часто их часто называют реагентными.

Цель применения - понизить агрегативную устойчивость, т.е. снизить потенциальный барьер коагуляции. В зависимости от факторов устойчивости, которые преимущественно реализовывались в данной суспензии, и стабилизаторов, которые присутствуют, выбирают соответствующие реагенты.

В настоящее время преимущественно использует пентагидроксохлорид алюминия А12(ОН)5С1, так он имеет меньшую кислотность, интенсифицирует хлопьеобразование, дает малое остаточное содержание алюминия, его растворы не требуют использования нержавеющих сталей и противокоррозийной защиты аппаратов и оборудования.

Эффективным методом понижения агрегативной устойчивости суспензий является сенсибилизация. Для этого обычно используются флокулянты - линейные полимеры с длиной цепочки до 1 мк, несущие полярные группы на обоих концах цепи. Длинная молекула полимера присоединяется двумя концами к двум разным частицам дисперсной фазы, скрепляя их углеводородным мостиком. Образуются флокулы -- рыхлый хлопьевидный осадок.

Частицы различного происхождения имеют различу распределение зарядов, гидрофильных и гидрофобных областей на поверхности. Вследствие этого не представляется возможным применение некоего универсального полимерного флокулянта, необходим набор флокулянтов.

Полиакриламид, ПВО, ПДМДА являются наиболее широко применяемыми флокулянтами, выпускаемыми отечественной промышленностью. Из зарубежных флокулянтов, имеющих доступ на российский рынок, высокими флокулирующими свойствами обладают японские санфлоки

N-520p, AH-70p, AS-310p, Al-310p, Al-110p, CH-799p

Необходимая концентрация флокулянта. в суспензии зависит от концентрации в ней взвешенных частиц. Количество флокулянта должно составлять 0,01 - 2% от 1 массы твердой фазы. В противном случае может быть достигнут обратный эффект - произойдет коллоидная защита взвешенных частиц.

Способ внесения полимера существенно сказывается на результатах коагуляции суспензии. Установлено, что лучше всегофлокулянт добавлять дробно в виде двойной добавки, т.е. вся доза флокулянта первоначально добавляется к половине объема суспензии, а через некоторое время этот раствор сливают со второй половиной исходной суспензии.

Электрические методы разрушения суспензий используются в тех случаях, когда частицы в суспензиях имеют заряд, т. е. стабилизированы ионогенными веществами. В разрушаемой суспензии создается разность потенциалов, приводящая к направленному движению заряженных частиц и осаждению их на соответствующем электроде. Эти методы требуют больших энергетических затрат и специального оборудования и обычно не используются для разрушения больших объёмов суспензий.

Мокрый способ ситового анализа используют в случаях необходимости очень точного определения гранулометрического состава порошков, растрескивающихся при температурах ниже 105_С, также слипающихся или содержащих большое количество мелкой фракции. Мельчайшие частицы отмывают слабой струёй воды до тех пор, пока слив не станет прозрачным. Остаток на сите высушивают, взвешивают и по разности масс находят количество отмытого шлама.

Фракции частиц обозначают номерами сит. Например, если фракция получена последовательным просеиванием материала на ситах № 2 и № 1, фракцию обозначают следующим образом: 2-1 мм. Результаты ситового анализа представляют графически в виде так называемых кривых распределения. Последние подразделяют на дифференциальные (показывающие процентное содержание отдельных фракций) и интегральные (отражающее суммарное процентное содержание всех фракций меньше или больше данного размера).

Зная распределение частиц по их размерам, можно ответить на основные вопросы дисперсионного анализа:

* каковы размеры самой малой и самой большой частицы;

* частиц какого размера больше всего;

* каков фракционный состав системы, т. е. каково процентное содержание данной фракции в системе.

Под фракцией понимается та часть порошка, размер частиц в которой отвечает выбранному интервалу размеров.

Пример. В данном порошке самая маленькая частица имеет r = 2,0 · 10-5 м, а самая большая - r = 3,5 10-5 м. Примем, что частицы радиусы которых не отличаются больше, чем на 0,3 10-5 м, образуют одну фракцию. Тогда:

* 1-я фракция - все частицы с радиусом (2,0 2,3) - 10-5 м;

* 2-я фракция - все частицы с радиусом (2,3 2,6) - 10-5 м;

* 3-я фракция - все частицы с радиусом (2,6 2,9) - 10-5 м;

* 4-я фракция - все частицы с радиусом (2,9 3,2) - 10-5 м;

* 5-я фракция - все частицы с радиусом (3,2 3,5) - 10-5 м.

Свойства суспензии, а также рассматриваемых порошков в значительной степени определяются размерами частиц дисперсной фазы. Дисперсионный анализ - это совокупность методов измерения размеров частиц. При дисперсионном анализе определяют также дисперсность D и удельную поверхность Sуд.

Методы дисперсионного анализа можно разделить на три группы.

1) Методы измерения параметров отдельных частиц (размеров, массы и т. д.) с последующей статистической обработкой результатов большого числа измерений:

* методы, в которых линейные размеры частиц измеряют с помощью оптического микроскопа, который обеспечивает предел измерений от 1 мкм до нескольких миллиметров, и электронного микроскопа, позволяющего измерять размеры частиц от 1 нм до нескольких микрон;

* методы, основанные на измерении электрического сопротивления при пропускании суспензии порошка через тонкий канал с помощью счётчиков Культера, позволяющие измерять размеры частиц от 0,1 до 100 мкм;

* методы, в которых измеряют изменения светового потока при пропускании суспензии через тонкий канал, вызванные попаданием в этот канал частиц дисперсной фазы. Позволяют измерять размеры частиц от 5 до 500 мкм;

* методы, в которых измеряют интенсивность света, рассеянного единичной частицей, с помощью ультрамикроскопа или поточного ультрамикроскопа Дерягина-Власенко (размеры частиц от 2 до 500 нм).

2) Методы, основанные на механическом разделении дисперсной системы на несколько классов по крупности частиц:

* ситовый анализ (размеры частиц от 0,05 до 10 мм);

* разделение частиц в потоке газа или жидкости (размеры частиц от 0,1 до нескольких миллиметров).

3) Методы, основанные на изучении свойств ансамбля частиц:

* методы седиментационного анализа, основанные на регистрации кинетики накопления осадка. Седиментационный анализ состоит в экспериментальном получении кривой седиментации, т. е. зависимости массы осадка m дисперсной фазы от времени осаждения t. Седиментометр Фигуровского позволяет определить размеры частиц от 1 до 500 мкм. Применение центрифуг позволяет снизить предел измерения до 0,1 мкм, а ультрацентрифуг - до 1-100 нм (в этом случае можно измерять даже размеры крупных молекул);

* методы рассеяния света малыми частицами (нефелометрия и турбодиметрия), методы неупругого рассеяния, а также рассеяния рентгеновских лучей, нейтронов;

* адсорбционные методы, используемые для определения удельной поверхности частиц. Измеряют количество адсорбированного вещества в мономолекулярном слое. Наиболее распространён метод низкотемпературной газовой адсорбции с использованием азота (аргона, криптона) в качестве адсорбата. Удельную поверхность высокодисперсной твёрдой фазы часто определяют методом адсорбции из раствора. Адсорбатом при этом служат красители, ПАВ или другие вещества, малые изменения концентрации которых легко определяются с достаточно высокой точностью. Удельную поверхность частиц можно находить также по теплоте адсорбции (или смачивания). Поточные микрокалориметры позволяют проводить измерения как в газовой, так и в жидкой среде. Разнообразные адсорбционные методы дисперсионного анализа позволяют определять удельные поверхности 10-103 м2 /г, что примерно соответствует размерам частиц от 10 до 1000 нм;

* методы, основанные на исследовании газопроницаемости слоя анализируемого вещества при фильтровании через него воздуха при атмосферном давлении или в вакууме. Эти методы позволяют определять удельную поверхность;

* в ряде случаев дисперсность порошков измеряют по скорости растворения, теплофизическим, магнитным и другим характеристикам системы, связанным с размером частиц дисперсной фазы или межфазной поверхности.

Во всех упомянутых методах дисперсионного анализа получают, как правило, интегральную характеристику, позволяющую судить о некоторых средних параметрах системы. В некоторых случаях удаётся определить также дифференциальную функцию распределения числа частиц (их объёма, массы) по размерам.