Найти угол зная тангенс. Синус, косинус, тангенс и котангенс в тригонометрии: определения, примеры

Вспомним школьный курс математики и поговорим о том, что такое тангенс и как найти тангенс угла. Сначала определим, что называется тангенсом. В прямоугольном треугольнике тангенсом острого угла является отношение противолежащего катета к прилежащему. Прилежащим катетом является тот, который участвует в образовании угла, противолежащим — тот, который расположен напротив угла.

Также тангенсом острого угла является отношение синуса этого угла к его косинусу. Для понимания напомним, что является синусом и косинусом угла. Синусом острого угла в прямоугольном треугольнике является отношение противолежащего катета к гипотенузе, косинус — это отношение прилежащего катета к гипотенузе.

Есть еще котангенс, он противоположен тангенсу. Котангенсом является отношение прилежащего катета к противолежащему и соответственно отношение косинуса угла к его синусу.

Синус, косинус, тангенс и котангенс являются тригонометрическими функциями угла, они показывают соотношения между углами и сторонами треугольника, помогают вычислять стороны треугольника.

Вычисляем тангенс острого угла

Как найти тангенс в треугольнике? Чтобы не тратить время на поиски тангенса, можно найти специальные таблицы, где указаны тригонометрические функции многих углов. В школьных задачках по геометрии очень распространены определенные углы, и значения их синусов, косинусов, тангенсов и котангенсов учителя просят запомнить. Мы предлагаем вам небольшую табличку с нужными значениями эти углов.

Если же угол, тангенс которого нужно найти, не представлен в этой таблице, то можно воспользоваться двумя формулами, которые мы и представили выше в словесной форме.

Первый способ вычислить тангенс угла — это поделить длину противолежащего катета на длину прилежащего. Допустим, противолежащий катет равен 4, а прилежащий 8. Чтобы найти тангенс, надо 4:8. Тангенс угла будет равен ½ или 0,5.

Второй способ вычисления тангенса — это поделить значение синуса данного угла на значение его косинуса. Например, нам дан угол в 45 градусов. Его sin = корень из двух, поделенный на два; его cos равен тому же числу. Теперь делим синус на косинус и получаем тангенс, равный единице.

Бывает, что нужно воспользоваться именно этой формулой, но известен только один элемент — или синус, или косинус. В таком случае будет полезно вспомнить формулу

sin2 α + cos2 α = 1. Это основное тригонометрическое тождество. Выражая неизвестный элемент через известный, можно выяснить его значение. А зная синус и косинус, найти тангенс уже нетрудно.

А если геометрия — это явно не ваше призвание, но сделать домашнее задание все же нужно, то можно воспользоваться онлайн-калькулятором расчета тангенса угла .

Мы рассказали вам на простых примерах, как находить тангенс. Однако условия задач бывают труднее и не всегда можно быстро выяснить все необходимые данные. В этом случае вам поможет теорема Пифагора и различные тригонометрические функции.

Где были рассмотрены задачи на решение прямоугольного треугольника, я пообещал изложить приём запоминания определений синуса и косинуса. Используя его, вы всегда быстро вспомните – какой катет относится к гипотенузе (прилежащий или противолежащий). Решил в «долгий ящик не откладывать», необходимый материал ниже, прошу ознакомиться 😉

Дело в том, что я не раз наблюдал, как учащиеся 10-11 классов с трудом вспоминают данные определения. Они прекрасно помнят, что катет относится к гипотенузе, а вот какой из них - забывают и путают. Цена ошибки, как вы знаете на экзамене – это потерянный бал.

Информация, которую я представлю непосредственно к математике не имеет никакого отношения. Она связана с образным мышлением, и с приёмами словесно-логической связи. Именно так, я сам, раз и на всегда запомнил данные определения. Если вы их всё же забудете, то при помощи представленных приёмов всегда легко вспомните.

Напомню определения синуса и косинуса в прямоугольном треугольнике:

Косинус острого угла в прямоугольном треугольнике - это отношение прилежащего катета к гипотенузе:

Синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе:

Итак, какие ассоциации у вас вызывает слово косинус?

Наверное, у каждого свои 😉 Запоминайте связку:

Таким образом, у вас сразу в памяти возникнет выражение –

«… отношение ПРИЛЕЖАЩЕГО катета к гипотенузе ».

Проблема с определением косинуса решена.

Если нужно вспомнить определение синуса в прямоугольном треугольнике, то вспомнив определение косинуса, вы без труда установите, что синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе. Ведь катетов всего два, если прилежащий катет «занят» косинусом, то синусу остаётся только противолежащий.

Как быть с тангенсом и котангенсом? Путаница та же. Учащиеся знают, что это отношение катетов, но проблема вспомнить какой к которому относится – то ли противолежащий к прилежащему, то ли наоборот.

Определения:

Тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему:

Котангенс острого угла в прямоугольном треугольнике - это отношение прилежащего катета к противолежащему:

Как запомнить? Есть два способа. Один так же использует словесно-логическую связь, другой – математический.

СПОСОБ МАТЕМАТИЧЕСКИЙ

Есть такое определение – тангенсом острого угла называется отношение синуса угла к его косинусу:

*Запомнив формулу, вы всегда сможете определить, что тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему.

Аналогично. Котангенсом острого угла называется отношение косинуса угла к его синусу:

Итак! Запомнив указанные формулы вы всегда сможете определить, что:

— тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему

— котангенс острого угла в прямоугольном треугольнике - это отношение прилежащего катета к противолежащему.

СПОСОБ СЛОВЕСНО-ЛОГИЧЕСКИЙ

О тангенсе. Запомните связку:

То есть если потребуется вспомнить определение тангенса, при помощи данной логической связи, вы без труда вспомните, что это

«… отношение противолежащего катета к прилежащему»

Если речь зайдёт о котангенсе, то вспомнив определение тангенса вы без труда озвучите определение котангенса –

«… отношение прилежащего катета к противолежащему»

Есть интересный приём по запоминанию тангенса и котангенса на сайте " Математический тандем " , посмотрите.

СПОСОБ УНИВЕРСАЛЬНЫЙ

Можно просто зазубрить. Но как показывает практика, благодаря словесно-логическим связкам человек запоминает информацию надолго, и не только математическую.

Надеюсь, материал был вам полезен.

С уважением, Александр Крутицких

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Тригонометрия - раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.

Yandex.RTB R-A-339285-1

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла (sin α) - отношение противолежащего этому углу катета к гипотенузе.

Косинус угла (cos α) - отношение прилежащего катета к гипотенузе.

Тангенс угла (t g α) - отношение противолежащего катета к прилежащему.

Котангенс угла (c t g α) - отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Приведем иллюстрацию.

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса - вся числовая прямая, то есть эти функции могут принимать любые значения.

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от - ∞ до + ∞ .

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Начальная точка A с координатами (1 , 0) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A 1 . Определение дается через координаты точки A 1 (x , y).

Синус (sin) угла поворота

Синус угла поворота α - это ордината точки A 1 (x , y). sin α = y

Косинус (cos) угла поворота

Косинус угла поворота α - это абсцисса точки A 1 (x , y). cos α = х

Тангенс (tg) угла поворота

Тангенс угла поворота α - это отношение ординаты точки A 1 (x , y) к ее абсциссе. t g α = y x

Котангенс (ctg) угла поворота

Котангенс угла поворота α - это отношение абсциссы точки A 1 (x , y) к ее ординате. c t g α = x y

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (0 , 1) и (0 , - 1). В таких случаях выражение для тангенса t g α = y x просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом. Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Синус и косинус определены для любых углов α .

Тангенс определен для всех углов, кроме α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z)

Котангенс определен для всех углов, кроме α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z)

При решении практических примеров не говорят "синус угла поворота α ". Слова "угол поворота" просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.

Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности - точка A c координатами (1 , 0).

Положительному числу t

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t - ордината точки единичной окружности, соответствующей числу t. sin t = y

Косинус (cos) числа t

Косинус числа t - абсцисса точки единичной окружности, соответствующей числу t. cos t = x

Тангенс (tg) числа t

Тангенс числа t - отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. t g t = y x = sin t cos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t , совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α , отличным от α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α , кроме α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z).

Можно сказать, что sin α , cos α , t g α , c t g α - это функции угла альфа, или функции углового аргумента.

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу t соответствует определенное значение синуса или косинуса числа t . Всем числам, отличным от π 2 + π · k , k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k , k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс - основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A (1 , 0) на угол величиной до 90 градусов и проведем из полученной точки A 1 (x , y) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A 1 O H равен углу поворота α , длина катета O H равна абсциссе точки A 1 (x , y) . Длина катета, противолежащего углу, равна ординате точки A 1 (x , y) , а длина гипотенузы равна единице, так как она является радиусом единичной окружности.

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.

sin α = A 1 H O A 1 = y 1 = y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α , при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

В этой статье мы разберем такое понятие, как тангенс угла . Начнем с понятия прямого угла. Прямым углом называется угол равный 90 0 . Угол в котором меньше 90 градусов - называется острым. Угол в котором больше 90 градусов - называется тупым. В развернутом угле 180 градусов.

Изображаем треугольник с прямым углом С, при этом противолежащая сторона будет имеет такое же обозначение (с -будет гипотенузой), аналогично поступаем и с другими углами. Сторона находящаяся противоположно от острого угла - называется катетом.

Синус и косинус находятся с помощью катета и гипотенузы, а именно:
sinA = a/c
cosA = b/c

Формула тангенса

tg A = a/b

другими словами определение тангенса - это деление противоположного катета на прилежащий
Существует ещё одна равносильная формула тангенса

tg A = sinA/cosA

расшифровывается как деление sin на cos.

Котангенс находится практически аналогично, лишь значения поменяются местами.

ctg A = cosA/sinA

Внимание! В помощь родителям и учителям гдз по математики 5 класс (http://spisaly.ru/gdz/5_klass/math). Все предложенные на сайте книги можно скачать или изучить онлайн. Перейдите по ссылке и узнайте подробнее.

Данные тригонометрические функции, значительно облегчают вычисление углов. Благодаря синусу, косинусу и тангенсу стало возможным, определение всех неизвестных углов в треугольнике, с одним известным.

Обозначения для основных углов:
тангенс 30 - 0,577
тангенс 45 - 1,000
тангенс 60 - 1,732

Существуют специальная , значения которой можно получить при помощи деления значений таблиц синуса и косинуса, но так как это достаточно трудоемкий процесс и нужна данная таблица тангенсов.

Есть очень много задач в которых у треугольника углы равны 90, 30, 60 градусам. либо 90, 45, 45 градусам. Для таких фигур лучше заучить их соотношение, что бы потом было проще.

В первом случае катет противоположный 30 градусам равняется 1/2 от гипотенузы.
Во втором случае гипотенуза превышает катет в?2 раз.

Тригонометрия – тема, которую многие обходят стороной. Несмотря на это, если найти к ней правильный подход она станет очень интересной для вас. Тригонометрические формулы, в том числе и формулы для нахождения тангенса, используются во многих сферах реальной жизни. Данная статья расскажет о способах нахождения тангенса угла и приведет примеры применения данной величины в жизни. Это даст вам мотивацию на пути изучения данной темы.

Несмотря на мнение, которые бытует среди большинства школьников, тригонометрия достаточно часто применяется в жизни. Наглядный пример практического применения даст вам стимул не лениться. Вот несколько сфер деятельности где используются тригонометрические вычисления, в том числе и нахождение тангенса угла:

  • Экономика.
  • Астрономия.
  • Авиация.
  • Инженерия.

Итак, ниже будут приведены способы нахождения tg.

Как найти tg угла

Нахождение тангенса угла достаточно просто. Вы можете изучить данную тему и просто вызубрить правила, но все это может вылететь из головы на экзамене. Поэтому стоит подходить к данному вопросу осмысленно. Основные формулы для запоминания:

  • tg0° = 0
  • tg30° = 1/√3
  • tg45° = 1
  • tg60° = √3
  • tg90° = ∞ (бесконечность/неопределенно)

Обратите внимание, что величины идут по возрастанию: чем больше угол – тем больше значение тангенса. Соответственно, при градусном значении угла в 0° мы получим 0. При значении в тридцать градусов – единица поделенная на корень из трех и т.д., пока мы не достигнем отметки в 90°. При нем величина тангенса равна бесконечности или неопределенности (исходя из конкретной ситуации).

Данные выражения вытекают из правила нахождения тангенса через прямоугольный треугольник. Так, тангенс угла A (tgA) равен соотношению противолежащего катета к прилежащему. Представьте, что дан прямоугольный треугольник, в котором известны все стороны, но не известны углу. По решению задачи требуется найти тангенс угла A. Величина стороны, которая лежит напротив угла – 1, а прилежащего катета – √3. Их соотношение дает 1/√3. Мы уже знаем, что величина угла при данном показателе равна 30 градусам. Соответственно, угол A = 30°.

В прямоугольном треугольнике у прямоугольного угла оба тангенса – прилежащие. Противолежащая сторона данного угла – гипотенуза. Именно потому, что мы не можем разделить два катета друг на друга (нарушится условие нахождения), тангенс 90° в данном случае не существует.

Помимо всего этого, часто приходится находить тангенс тупого угла. Обычно в задачах встречаются тупые углы с величиной в 120 или 150 градусов. Формула нахождения тангенса тупого угла выглядит следующим образом: tg(180-a) = tga.
К примеры, нам необходимо найти тангенс 120°. Необходимо задать себе следующий вопрос: сколько нужно отнять от 180, чтобы получить 120? Однозначно, 60°. Отсюда следует, что тангенс 120° и тангенс 60° равны друг другу и tg120° = √3. По такой же логике можно найти тангенс в 150 и 180 градусов. Их значения будут соответственно равны 1/√3 и 0. Величины тангенсов других углов приведены в тригонометрической таблицы, но используются они крайне редко.

Как найти tg угла онлайн

Существует много онлайн ресурсов для нахождения тангенса угла. Одним из таких является сайт FXYZ . Перейдите по ссылке. Перед вами выйдет страница, где будут приведены основные формулы, связанные с тангенсом, а также калькулятор. Пользоваться калькулятором достаточно просто. Необходимо ввести соответствующие и калькулятор вычислит ответ. Этот несложный алгоритм поможет вам в случае, если вы что-то забыли. На данном сайте есть два калькулятора. Один – для нахождения величины тангенса исходя из длин катетов треугольника, а второй исходя из величины угла. Используйте тот вычислитель, который требует задача.


Как вы могли заметить, нахождения тангенса и других тригонометрических показателей очень часто применяется в реальной жизни, а находить эти значения совсем несложно. Если вы поймете суть нахождения, то что-либо зазубривать вам не придется – вы сами сможете дойти до правильного ответа. Если все-таки что-то не получается, воспользуйтесь калькулятором, но не злоупотребляйте. На экзамене, зачете или школьной контрольной работе такой возможности вам никто не предоставит. Более того, если вы поступите на факультет, где изучается тригонометрия высшей математики, без базовых знаний вам придется серьезно попотеть чтобы не срезаться.