Электронный эпра взрывозащищенный инструкция по подключение. Схема балласта для люминесцентных ламп

Люминесцентные светильники обладают некоторыми недостатками, которые становятся заметными после включения света. Сильное гудение и частое мерцание света, наблюдающееся при работе подобных встроенных светильников, может вывести из душевного равновесия любого человека. Единственным решением этой проблемы является установка специального пускорегулирующего устройства под названием ЭПРА.

Производство люминесцентных светильников задумывалось для развития систем освещения, использовавших обычные лампы накаливания, которые обладали крайне малым сроком эксплуатации. Максимальный срок службы лампы накаливания составляет около двух тысяч часов, что не может сравниться с долговечностью люминесцентных ламп, который насчитывает более 16 тысяч часов. Кроме этого, люминесцентные лампы обладают хорошим световым потоком, который превышает свет от обычных ламп более чем в шесть раз .

Электронный балласт ЭПРА

Электронным балластом называется специальное изделие, которое автоматически запускает люминесцентные лампы и продолжительное время поддерживает их в работе. Изготовление ЭМПРА началось три десятилетия тому назад. Они должны были заменить большие пускорегулирующие изделия. Специалисты связывают это с тем, что у старых пускорегулирующих аппаратов было очень много недостатков, которые сильно осложняли их использование.

Перечень основных недостатков такой:

  • располагающийся в панели пускорегулирующего аппарата дроссель был больших габаритов и очень сильно шумел при работе;
  • довольно частое мерцание света;
  • очень маленький коэффициент полезного действия;
  • при поломке стартера может наблюдаться запоздалое срабатывание люминесцентной лампы.

Как устроен ЭПРА 18 Вт для светодиодных ламп

Новый ЭМПРА для светодиодной лампы , приобретенный в любом магазине, представляет собой такие составляющие:

  1. Качественный фильтр частоты , который сглаживает помехи низкого уровня и направлен на выводы изделия. Подобный фильтр помогает уменьшить воздействие светодиодной лампы на остальное бытовое оборудование, к примеру, на число помех при работе радиоприемников или телевизоров.
  2. Мощный выпрямитель , который преобразовывает в схеме переменное напряжение в постоянное.
  3. Небольшой инвертор .
  4. Разные специальные узлы, которые необходимы для корректировки мощности в схеме светодиодной лампы.
  5. Малогабаритный фильтр постоянного напряжения.
  6. Качественный дроссель, ограничивающий максимальный ток в схеме.

А также инвертор зачастую оснащен приспособлением, которое несет ответственность за плавность регулирования яркости света светодиодной лампы.

ЭПРА для люминесцентных ламп

Люминесцентный светильник, который снабжен ЭПРА , начинает работать, проходя несколько основных этапов.

Включение люминесцентного светильника

Специальный выпрямитель, который отвечает за преобразование постоянного напряжения в переменное, передает его на буфер мощного конденсатора. Далее, это напряжение проходит дальше и оказывается на полумостовом инверторе. В это время заряжаются все конденсаторы и микросхемы маленького напряжения.

Когда значение напряжения достигает показателя 7 вольт, то начинается намеренное сбрасывание микросхемы, а потом заряжается управляющий конденсатор, который регулируют несколько транзисторов. При достижении напряжением значения в 12 вольт, элементы люминесцентной лампы быстро нагреваются.

Предварительный нагрев люминесцентного светильника

При перемещении тока в изделии, сразу начинается уменьшение максимальной частоты колебаний, а значение напряжения возрастает. Прогревается люминесцентный светильник всего несколько секунд, если начинать отсчет с момента подачи напряжения на изделие. В этом случае электронный балласт играет роль систематизатора, потому что он не дает лампе запустится, не пройдя этап подготовительного прогрева. Это поможет избежать многих проблем в работе светильника.

Зажигание люминесцентного светильника

Значения показателей полумоста, к примеру, его амплитуды, уменьшаются до своего минимума. Для того чтобы люминесцентный светильник загорелся, необходимо напряжение около 620 вольт. В противном случае он просто не будет работать. Специальный дроссель способен значительно превысить это значение, увеличивая напряжение в электрической сети, что в дальнейшем приводит к зажиганию светильника. Обычно весь этот процесс занимает около нескольких секунд.

Горение люминесцентного светильника

Из-за работы электронного балласта, сила тока не превышает оптимальное значение для качественной работы лампы. ЭПРА полностью контролирует управление амплитудой переключения полумоста, обеспечивая тем самым стабильную работу светильника.

ЭПРА схема подключения

Сначала необходимо аккуратно разобрать люминесцентный светильник. Далее, стоит извлечь из него устаревшие компоненты изделия. Это, прежде всего, дроссель, разные конденсаторы, стартер и другие элементы. В светильнике необходимо оставить лишь люминесцентные лампы, жгуты проводов и ЭПРА.

Сделать ЭПРА подключение способен абсолютно любой человек, обладающий минимальными познаниями о работе электрических схем. Конечно, что людям, не располагающим опытом в этой области, даже и не следует пытаться, а необходимо обратиться к опытному электрику.

Для подключения электронного балласта будут необходимы такие инструменты и материалы:

  • набор отверток;
  • бокорезы;
  • прибор, определяющий фазы тока;
  • небольшое количество изоленты;
  • довольно острый нож, необходимый для обработки концов проводов;
  • крепежные материалы.

Перед тем как собрать схему, необходимо определиться с местоположением изделия ЭПРА внутри люминесцентного светильника. При этом стоит учесть длины абсолютно всех проводов и наличие удобного доступа к нужной управляющей системе. Именно поэтому стоит заранее проделать отверстие в корпусе светильника, куда есть возможность установить ЭПРА при помощи крепежных материалов. Далее, нужно подключить электронный балласт к разъемам светильника. Существует еще один не менее важный момент, который заключается в том, что мощность ЭПРА обязана быть в несколько раз больше, чем у люминесцентного светильника.

Как только окончен процесс правильной сборки люминесцентного светильника с устройством ЭПРА, необходимо установить его на нужное место. Сначала стоит проверить мультиметром все провода, которые торчат из стены, на присутствие в них рабочего напряжения. Когда оно отсутствует, то нужно соединить все контакты с оборудованием. После всех этих действий, стоит сделать тестовый запуск светильника, оборудованного ЭПРА. В случае когда все действия прошли успешно, то люминесцентные лампы обязаны загореться одновременно, без дополнительного процесса разогрева, а излучаемый свет не должен часто мерцать.

Достоинства и недостатки ЭПРА 18 Вт

Опытные электрики выделяют несколько главных достоинств использования электронных балластов в работе люминесцентных светильников. К ним, прежде всего, можно отнести:

  1. Сбережение максимальной мощности света , при уменьшении количества потребляемой блоком питания электрической энергии.
  2. Отсутствие сильного мерцания света , которое считается особенностью люминесцентных светильников.
  3. Уменьшение шума в процессе работы светильника.
  4. Большой срок эксплуатации лампы, что стало возможным из-за применения устройства ЭПРА.
  5. Удобное управление яркостью света люминесцентного светильника.
  6. Устойчивость к колебаниям и перепадам рабочего напряжения в электрической сети питания.
  7. Большая экономия в плане следующих замен основных деталей светильника. Из-за того, что при помощи блока питания будет использоваться наиболее плавный режим пуска изделия, то это может увеличить срок эксплуатации стартеров и люминесцентных ламп.

Главным недостатком применения ЭПРА является, как и у других новейших технологий и изделий, очень высокая стоимость по сравнению с остальными подобными блоками питания.

Содержание:

Освещение в больших помещениях все чаще осуществляется с помощью трубчатых люминесцентных ламп. Они способны значительно экономить электроэнергию и освещать пространство рассеянным светом. Однако их срок эксплуатации во многом зависит от нормальной работы всех составных частей. Среди них большое значение имеет схема балласта люминесцентных ламп, обеспечивающая зажигание и поддерживающая нормальный рабочий режим.

Балласт для люминесцентных ламп

В большинстве традиционных конструкций, рассчитанных на ток с частотой 50 Гц, для электропитания используются электромагнитные пускорегулирующие аппараты. Получение высокого напряжения происходит через реактор, когда размыкается биметаллический ключ. Через него протекает ток, обеспечивающий накал электродов при замкнутых контактах.

Данные пусковые устройства имеют ряд серьезных недостатков, не позволяющих люминесцентным лампам полностью использовать свой ресурс при освещении помещений. Создается мерцающий свет, повышенный уровень шума, нестабильный свет во время перепадов напряжения.

Все эти недостатки устраняются путем применения электронных пускорегулирующих аппаратов (), получивших название электронного балласта. Использование балласта позволяет практически мгновенно зажигать лампу без шума и мерцания. Высокочастотный диапазон делает освещение более комфортным и стабильным. Полностью нейтрализуется негативное воздействие колебаний напряжения сети. Все мигающие и вспыхивающие неисправные лампы отключаются с помощью системы контроля.

Все электронные балласты имеют относительно высокую стоимость. Однако, в дальнейшем, происходит видимая компенсация начальных затрат. При одном и том же качестве светового потока, энергопотребление уменьшается в среднем на 20%. Светоотдача люминесцентной лампы повышается за счет более высокой частоты и повышенного коэффициента полезного действия ЭПРА в сравнении с электромагнитными устройствами. Щадящий режим пуска и работы с применением балласта позволяет увеличить срок эксплуатации ламп на 50%.

Эксплуатационные расходы значительно снижаются, поскольку не требуется замена стартеров, а количество также сокращается. При использовании системы управления светом можно добиться дополнительной экономии электроэнергии до 80%.

Типовая схема балласта

В конструкции ЭПРА применяется активный корректор коэффициента мощности, обеспечивающий совместимость с электрической сетью. Основой корректора является мощный повышающий импульсный преобразователь, управляемый специальной интегральной микросхемой. Это обеспечивает номинальный режим с коэффициентом мощности, близким к 0,98. Высокое значение данного коэффициента сохраняется в любых режимах работы. Изменение напряжения допускается в диапазоне 220 вольт + 15%. Корректор обеспечивает стабильную освещенность даже при значительных перепадах напряжения сети. Для его стабилизации используется промежуточная .


Важную роль играет сетевой фильтр, сглаживающий высокочастотные пульсации питающего тока. В совокупности с корректором этот прибор жестко регламентирует все составляющие потребляемого тока. Вход сетевого фильтра оборудован защитным узлом с варистором и предохранителем. Это позволяет эффективно устранять сетевые перенапряжения. С предохранителем последовательно соединяется терморезистор, имеющий отрицательный температурный коэффициент сопротивления, обеспечивающий ограничение броска входного тока, во время подключения ЭПРА от инвертора к сети.

Кроме основных элементов, схема балласта для люминесцентных ламп предполагает наличие специального узла защиты. С его помощью происходит контроль за состоянием ламп, а также их отключение в случае неисправности или отсутствия. Данный прибор следит за током, который потребляет инвертор, и напряжением, поступающим на каждую из ламп. Если в течение определенного промежутка времени заданный уровень напряжения или тока превышает установленное значение, то защита срабатывает. То же самое происходит во время обрыва контура нагрузки.


Исполнительным элементом защитного узла является тиристор. Его открытое состояние поддерживается током, проходящим через резистор, установленный в балласте. Значение балластного сопротивления позволяет тиристорному току поддерживать включенное состояние до того момента, пока с ЭПРА не будет снято питающее напряжение.

Узел управления ЭПРА питается через сетевой выпрямитель при прохождении тока в балластном резисторе. Сокращение мощности электронного балласта и улучшение его коэффициента полезного действия позволяет использовать ток сглаживающей цепи. Данная цепь подключается к точке, где соединяются транзисторы инвертора. Таким образом, происходит питание системы управления. Построение схемы обеспечивает запуск системы управления на начальной стадии, после чего, с небольшой задержкой запускается цепь питания.

Ремонт электронного балласта

Пускорегулирующие аппараты начали производиться более тридцати пяти лет назад. Конечно же, спустя все это время все модели были усовершенствованы и доработаны. Но сегодня не все могут реально оценить выгоду ЭПРА. Что это такое? Давайте рассмотрим.

Что такое ЭПРА?

ЭПРА - это электронные пускорегулирующие аппараты, которые устанавливаются для освещения помещения. Светильник ЭПРА существенно помогает сэкономить электроэнергию. Кроме этого, вы также экономите и на приобретении новых ламп. Последнее объясняется тем, что срок использования ламп намного выше, чем других подобных.

ЭПРА лампы дают качественное искусственное освещение, которое благоприятно влияет на работоспособность человека. Благодаря частоте мерцания до 400 герц глаза не устают, таким образом, в дальнейшем голова после работы не болит.

Характеристики и виды электронных пускорегулирующих аппаратов

Все электронные ПРА подразделяются на два вида:

  1. Аппараты, которые представляют собой единый блок.
  2. Аппараты, состоящие из нескольких частей.

Кроме этого, электронные пускорегулирующие аппараты могут разделяться на виды, согласно типу ламп: аппараты для галогеновых источников света, а также для светодиодов.

Если же рассматривать характеристики функционирования ЭПРА, то приборы подразделяются на электронные и электромагнитные.

В соответствии с европейской классификацией все электронные пускорегулирующие аппараты согласно потери мощности подразделяются на классы:

  • А1 - регулируемые.
  • А2 - нерегулируемые.
  • А3 - нерегулируемые ЭПРА (с большими потерями, нежели класс А2).

Как правило, выбирая светильник ЭПРА в магазине нужно руководствоваться последними разновидностями.

Возможности ЭПРА в современном мире

Современные электронные пускорегулирующие аппараты позволяют запуститься лампе мгновенно после того, как будут разогреты ее электроды. Кроме того, во время работы небольшое напряжение поддерживает ЭПРА. Что это значит? Ответ: количество потребляемой энергии значительно меньше, нежели во время горения ламп без данного аппарата.


Электронные ПРА, конечно же, можно заменить аналогами. Но это уже будут громоздкие и шумные дроссели, которые практически не применяются в электротехнике.

Главными особенностями электронных ПРА являются:

  • Во время работы лампы, которая подключена через ЭПРА, эффект мерцания снижается до нуля.
  • Не наблюдается такое явление как фальстарт лампы. То есть не происходят вспышки перед обычным стабильным зажиганием, когда ломается стартер. Значит, нити накала прослужат намного дольше.
  • ЭПРА помогает обеспечить стабильное освещение.
  • Некоторые электронные ПРА оборудованы регулятором мощности, которые помогают установить нужную яркость в том или ином помещении.

Как работает ЭПРА

Работа ЭПРА состоит из таких этапов:

  1. Сначала разогреваются электроды лампы. Их запуск занимает меньше секунды, обеспечивая Это помогает продлить срок службы самой лампы. Кроме того, стоит отметить, что светильник ЛПО ЭПРА или другие подобные лампы с этими устройствами можно запускать при очень низких температурах, что не сказывается отрицательно на их работе.
  2. Поджиг - второй этап работы ЭПРА. Во время его работы генерируется импульс высокого напряжения, что способствует наполнению колбы газом.
  3. Горение - последний этап, на котором поддерживается стабильное невысокое напряжение, необходимое для работы самой лампы.

Схема ЭПРА

В большинстве случаев ЭПРА-схема представляет собой двухтактный преобразователь напряжения. Он может быть как и полумостовым, так и мостовым. Последний вариант встречается очень редко.


В самом начале напряжение начинает выпрямляться После этого оно постепенно сглаживается конденсатором до стабильного напряжения 310 вольт.

Благодаря полумостовому инвертору напряжение становится высокочастотным.

ЭПРА схема предполагает использование с тремя обмотками. Самая главная из них подает переменное резонансное напряжение на лампу, а две остальные являются вспомогательными. Они противофазно открывают транзисторные ключи.

Таким образом, перед тем как происходит зажигание, максимальный ток накаляет две нити лампы. А большое напряжение на конденсаторе зажигает лампу, которая продолжает светиться, не меняя частоту с момента ее запуска. Как правило, время запуска - не больше 1 секунды.

Использование электронного ПРА со светодиодными модулями

Как мы уже говорили, некоторые осветительные приборы можно использовать с ЭПРА. Что это такое, мы тоже разобрали. Теперь давайте рассмотрим, в чем преимущества использования электронных пускорегулирующих аппаратов совместно со


Самым главным плюсом в данной ситуации является то, что здесь можно избежать сильных скачков напряжения и защитить устройство от электромагнитных помех. То есть ЭПРА защищает данный источник света от негативных внешних факторов. Кроме того, в этой ситуации электронные пускорегулирующие аппараты позволяют сэкономить электроэнергию до 30%, что также является немаловажным фактором при решении использовать ЭПРА. Экономия энергии здесь также объясняется отсутствием необходимости постоянной замены стартеров. А они ломаются намного быстрей и чаще, нежели электронные ПРА.

Электромагнитный ПРА (дроссель-стартер) имеет массу недостатков:

♦ надоедливое жужжание;

♦ непроизвольные вспышки и частое мерцание, исходящие от све­тильников использующих ЛЛ.

Основным и единственным его преимуществом является его деше­визна.

Бурное развитие электронной промышленности позволило создать электронный ПРА, обеспечивший совершенно новое качество работы люминесцентных ламп и светильников. Широкое использование электронных ПРА (они же ЭПРА, они же электронные балласты) связано с рядом их существенных преиму­ществ по сравнению с электромагнитными ПРА:

♦ приятный немерцающий свет без стробоскопических эффектов и отсутствие шума благодаря работе в диапазоне 30-100 кГц;

♦ слабое электромагнитное поле;

♦ надежное и быстрое (без мигания) зажигание ламп;

♦ стабильность освещения независимо от колебаний сетевого на­пряжения;

♦ возможность регулировки светового потока;

♦ отключение по истечении срока службы лампы;

высокое качество потребляемой электроэнергии - близкий к еди­нице коэффициент мощности благодаря потреблению синусоидального тока с нулевым фазовым сдвигом (при использовании активного корректора мощности);

♦ уменьшенное на 20 % энергопотребление (при сохранении све­тового потока) за счет повышения светоотдачи лампы на по­вышенной частоте и более высокий КПД ЭПРА по сравнению с классическими электромагнитным ПРА;

♦ увеличенный на 50 % срок службы ламп благодаря щадящему режиму работы и пуска;

♦ снижение эксплуатационных расходов за счет сокращения числа заменяемых ламп и отсутствия необходимости замены старте­ров;

♦ дополнительное энергосбережение до 70 % при работе в систе­мах управления светом.

В настоящее время ассортимент ЭПРА насчитывает десятки типо­размеров, отличающихся количеством и мощностью используемых с ними ламп, наличием или отсутствием возможности регулирования светового потока, характером включения ламп (с предварительным прогревом электродов или без него), наличием функции защиты аппарата и электросети от возможных аварийных ситуаций. При всем кажущемся многообразии схемные решения современных ЭПРА веду­щих мировых производителей одинаковы.

Схема № 1. Рассмотрим принцип работы простого электронного балласта на ИМС IR2153. На структурной схеме электронного бал­ласта (рис. 1) точка «А» подключается с помощью ключей Кл1 и Кл2 то к напряжению питания (1Ш = +310 В), то к общему проводу. Ключи, перезаряжая конденсатор, образуют переносное напряжение. В результате в точке «А» возникают однополярные высокочастотные импульсы напряжения (частота коммутации обычно находится в пре­делах 30-100 кГц), которые:

♦ во-первых, зажигают лампу;

♦ во-вторых, не дают газу деионизироваться (отсутствие мерцания).

Рис. 1. Структурная схема электронного балласта

Примечание.

При таком методе пуска и управления полностью исключен фальстарт, поскольку лампа гарантированно коммутируется на постоянное напряжение, провалы которого принципиально отсутствуют. Сокращаются размеры индуктивного элемента. Регулировкой скважности (или фазы) импульсов коммутации можно добиться изменения яркости свечения.

Схема № 2. Теперь рассмотрим миниатюрные электронные балла­сты на IR53HD420.

Внимание.

Конструкция гальванически связана с электрической сетью потен­циально опасна для жизни из-за возможного поражения электриче­ским током. Поэтому при изготовлении, проверке, налаживании и эксплуатации следует помнить о строгом соблюдении мер электро-безопасности. Конструкция должна быть выполнена так, чтобы исключить случайное касание оголенных выводов проводников или деталей. Проверяя работу конструкции, не следует касаться руками никаких ее деталей или цепей, а заменяемые детали перепаивать только при вынутой из розетки сетевой вилке.

Сверхминиатюрные электронные балласты, выполненные на гибридной микросхемеIR51HD420, рассчитаны на совместную работу с одиночными лампами, имеющими ток до 0,3 А, и широко использу­ются с компактными люминесцентными лампами. Структурная схемаIR53HD420/IR51HD420 представлена на рис. 2, а принципиальная схема балласта - на рис. 3.

Принцип работы аналогичен электронному балласту на IR2153, который мы уже рассмотрели выше. Дроссель сетевого фильтра L1 намотан на ферритовом кольце К20х12х6 М2000НМ двухжильным сетевым проводом (или сложенным вдвое МГТФ) до полного заполне­ния окна.



Рис. 2. Структурная схема HMCIR51HD420



Рис. 3. Принципиальная схема миниатюрного электронного балласта на IR51HD420

Совет.

Хорошие результаты помехоподавления в сочетании с миниа­тюрными размерами дают специализированные фильтры EPCOS : В84110-В-А14, В84110- A - AS , В84110-А-А10, В84110-А-А20.

Дроссель электронного балласта L2 выполнен на Ш-образном магнитопроводе из феррита М2000НМ. Типоразмер сердечника Ш5х5 с зазором 5 = 0,4 мм под всеми тремя рабочими поверхностями Ш-образного сердечника. Величина зазора в нашем случае - это толщина прокладки между соприкасающимися поверхностями полови­нок магнитопровода.

Для изготовления зазора необходимо проложить прокладки из немагнитного материала (нефольгированный стеклотекстолит или гетинакс) толщиной 0,4 мм между соприкасающимися поверхностями половинок магнитопровода и скрепить эпоксидным клеем.

Правило.

От величины немагнитного зазора зависит величина индуктивно­сти дросселя (при постоянном количестве витков). При уменьшении зазора индуктивность возрастает, при увеличении - уменьшается.

Обмотка L2 - 180 витков провода ПЭВ-2 диаметром 0,25 мм. Межслойная изоляция - лакоткань. Намотка - виток к витку. Диодный мост VD1 - импортный RS207, допустимый прямой ток 2 А, обратное напряжение 1000 В. Можно заменить на четыре диода с соответствующими параметрами. Гибридную микросхему IR51HD420 можно заменить на IR53HD420, IR51H420, IR53H420.

Совет.

При использовании IR 51 H 420, IR 53 H 420 нужно учесть, что у этих микросхем отсутствует встроенный диод вольтодобавки (между выводами 1 и 6), и его следует установить. Используемый при этом диод должен быть класса ultra - fast (сверхбыстрый) с параметрами:

обратное напряжение 400 В;

допустимый прямой постоянный ток 1 А;

время обратного восстановления 35 не.

Подойдут диоды 11DF4, BYV26B/C/D, HER156, HER157, HER105- HER108, HER205-HER208, SF18, SF28, SF106-SF109. Диод должен располагаться как можно ближе к микросхеме.

R3, С5, С6 - SMD элементы для поверхностного монтажа (С6 на 60 В). Конденсаторы С1, С2, С7 - К73-17. Cl, С2 - на 630 В, С7 - на 400 или 630 В; СЗ - электролитический (два по 10 мкФ в параллель) импортный на номинальное напряжение не менее 350 В; С4 - элек­тролитический на 25 В; С8 - полипропиленовый К78-2 на 1000 В.

Варистор RU1 фирмы EPCOS - S14K275, S20K275, заменим на TVR (FNR) 14431, TVR (FNR) 20431 или отечественный СН2-1а-430 В.

R1 - проволочный 2,2-4,7 Ом мощностью 1-2 Вт, можно заме­нить на терморезистор (термистор) с отрицательным температурным коэффициентом (NTC - Negative Temperature Coefficient) -SCK 105 (10 Ом, 5 А) или фирмы EPCOS - B57234-S10-M, B57364-S100-M. RK2 - позистор, такой же как и в электронном балласте на IR2153.

Балласт собран на печатной плате из фольгированного стеклотек­столита и помещен в алюминиевый экранирующий кожух. Печатная плата и расположение элементов показана на рис. 4. Рекомендации по настройке аналогичны тем, которые были рассмотрены в разделе, посвященном электронному балласту на IR2153.



Рис. 4. Печатная плата и расположение элементов миниатюрного электронного балласта наIR51HD420

Схема № 3. Рассмотрим электронные балласты на дискретных элементах. Достоинством таких электронных балластов является их низкая себестоимость. В качестве силовых ключей чаще всего здесь используются не полевые, а специальные биполярные транзисторы (сокращенно БМТ - биполярные мощные транзисторы).

Электронный балласт построен по принципу полумостового инвер­тора с самовозбуждением. Принципиальная схема варианта электрон­ного балласта, построенного по принципу полумостового инвертора с самовозбуждением, показана на рис. 5.


Рис. 5. Принципиальная схема полумостового инвертора с самовозбуждением на MJE13003

Обмотка I трансформатора Т1 включена в диагональ полумоста, образованного двумя последовательно включенными силовыми БМТ VT1 и VT2. Последовательно с обмоткой I включен токоограничительный дроссель L2, который с конденсатором С5 образует резонансный контур.

В момент подачи напряжения на преобразователь и после его запу­ска в контуре L2, С5, EL1 возбуждается резонанс, импульсное значение напряжения которого составляет около 250-300 В (в зависимости от лампы), что вполне достаточно для ее зажигания.

После зажигания ток, который проходит через лампу, резко умень­шает добротность контура, шунтируя С5. Преобразователь работает на высокой частоте, и индуктивное сопротивление дросселя L2 огра­ничивает ток лампы.

Из особенностей работы преобразователя можно отметить узел автозапуска на симметричном динисторе VS1 и токовое управление коммутацией силовых транзисторов. Цепь автозапуска необходима, поскольку генератор с обратной связью по току сам не запускается.

После включения питания конденсатор СЗ заряжается через рези­сторы R2, R3. Когда напряжение на СЗ достигает 30 В, симметричный динистор VS1 пробивается, и импульс разряда конденсатора СЗ откры­вает транзистор VT2, в результате чего запускается генератор. С помо­щью диодаVD5 в процессе работы генератора СЗ поддерживают в раз­ряженном СОСТОЯНИИ.

Открытия VT2 и запуск генератора приводит к тому, что в обмот­ках трансформатора Т1 наводится ЭДС, полярность которой опреде­ляется направлением их намотки. Полярность ЭДС в базовых обмот­ках обратных связей I и II противоположны. Поэтому открытие и закрытие силовых транзисторов происходит попеременно в момент насыщения сердечника трансформатора Т1.

Когда насыщается токовый трансформатор, через ранее открытый транзистор продолжает протекать ток. Этот ток является током намаг­ничивания обмотки токового трансформатора, и пока он протекает, напряжения на всех его обмотках равны нулю. Начинается процесс рассасывания в транзисторе, но через него, все еще, протекает ток. В результате, пока процесс рассасывания не закончится, через обмотку трансформатора течет ток и поддерживает нулевым напряжение на его обмотках.

Когда процесс рассасывания закончится, то транзистор начнет закрываться. Но теперь нужно время на выход из насыщения сердеч­ника трансформатора. Оно, хоть и не большое, но есть. За это время открытый транзистор почти закроется. И когда трансформатор тока выйдет из насыщения, только тогда напряжения на обмотках транс­форматора могут вновь появиться, но уже с другой полярностью, вызывая форсированное дозакрывание открытого транзистора и открывая закрытый. А у закрытого транзистора есть еще время задержки включения...

В результате, в инверторах с самовозбуждением, да еще и с обрат­ной связью по току, сквозной ток практически не возникает. Конечно, при условии правильного расчета трансформатора тока. При непра­вильном расчете сквозной ток хоть и есть, но он не опасен, прояв­ляется в виде выброса тока при включении транзистора и вызывает только дополнительные динамические потери.

Чем выше скорость переключения транзистора, тем меньше дина­мические потери и нагрев транзистора, с сохранением порядка при переключении - следующий откроется только тогда, когда закроется предыдущий.

Элементы CI, R1 и L1 предотвращают распространение по электро­сети радиопомех, возникающих при работе генератора. Резистор R1 также ограничивает начальный токовый импульс, возникающий при заряде электролитического конденсатора С2.

Примечание.

Не стоит удивляться разбросу номиналов элементов, указанных на схеме, - он реально существует для ламп различной мощности и разных производителей, конечно, с учетом того, что парные эле­менты (например, резисторы R 2 и R 3) имеют одинаковые номиналы.

Схема № 4. Электронный балласт без цепи автозапуска для самых маломощных КЛЛ.

Главное отличие от предыдущего варианта - отсутствие цепи автозапуска. Режим самовозбуждения создается здесь вследствие приоткрывания транзистора VT2 током через резисторыR2 и R3. Запуску так же способствует конденсатор С5, исключая шунтирующее влияние по постоянному току базовой обмотки на ток смещения транзистора. Если бы конденсатора не было, то ток, протекающий через резисторы R2 и R3, не смог бы создать на базе транзистора напряжение смеще­ния, открывающее транзистор VT2. Низкое омическое сопротивление обмотки держало бы транзистор закрытым, не позволяя инвертору запуститься. После запуска, конденсатор уже не мешает, так как по переменному току он имеет низкое сопротивление.

Внешний вид платы такого балласта показан на рис. 6. Схема его приведена на рис. 7.



Рис. 6. Внешний вид платы электронного балласта без цепи автозапуска



Рис. 7. Принципиальная схема электронного балласта без цепи автозапуска

Схема № 5. Рассмотрим электронные балласты, предназначение для работы с мощными ЛЛ (18-36 Вт). Существуют варианты, рабо­тающие как на одну, так и на две ЛЛ.

На рис. 8 показана принципиальная электрическая схема устрой­ства, а на рис. 9 - печатная плата с расположением элементов.

Рис. 8. Принципиальная схема электронного балласта для мощных ЛЛ



Рис. 9. Внешний вид платы с расположением элементов

Примечание.

Следует отметить, что в погоне за уменьшением себестоимо­сти электронного балласта китайские производители исключили помехоподавляющий фильтр и предохранитель.

Фильтрующий конденсатор С1 имеет минимальную величину, при которой еще сохраняется работоспособность устройства. Данная схема является классическим примером электронного балласта, наглядно показывающим, как при минимальном количестве недоро­гих элементов можно заставить светится ЛЛ.

Примечание.

Надо отметить, что при эксплуатации кольцевой ЛЛ с этим бал­ластом лампа в течении полугода вышла из строя (оборвался один из накалов). Но работоспособность ЛЛ была восстановлена путем установки дополнительного проволочного резистора 10 Ом 5 Вт вместо оборвавшегося электрода.